Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory

  • Ebrahimi, Narges (Mechanical Engineering Department, Shahrekord University) ;
  • Beni, Yaghoub Tadi (Faculty of Engineering, Shahrekord University)
  • Received : 2016.07.28
  • Accepted : 2016.11.18
  • Published : 2016.12.30


In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton's principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.


piezoelectric effect;flexoelectric effect;consistent couple-stress theory;electromechanical size-dependent;first order shear deformable theory;extended Kantorovich method


  1. Akgoz, B. and Civalek, O. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Computat. Mater. Sci., 77, 295-303.
  2. Akgoz, B. and Civalek, O. (2014), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294.
  3. Akgoz, B. and Civalek, O. (2015), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20.
  4. Asghari, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761.
  5. Belkorissat, I., Sid, M., Houari, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., Int. J., 18(4), 1063-1081.
  6. Buhlmann, S., Dwir, B., Baborowski, J. and Muralt, P. (2002), "Size effects in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature-size", Appl. Phys. Lett., 80(17), 3195-3197.
  7. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., Int. J., 55(3), 495-510.
  8. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Phys. Rev. Lett., 96(7), 075505.
  9. Civalek, O. (2006), "The determination of frequencies of laminated conical shells via the discrete singular convolution method", J. Mech. Mater. Struct., 1(1), 163-182.
  10. Civalek, O. and Gurses, M. (2009), "Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique", Int. J. Press. Vessels Pip., 86(10), 677-683.
  11. Cosserat, E. and Cosserat, F. (1909), Theorie des corps deformables [Theory of Deformable Bodies], A. Hermann et Fils, Paris, France.
  12. Cross, L.E. (2006), "Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients", J. Mater. Sci., 41(1), 53-63.
  13. Ebrahimi, F. and Salari, E. (2016), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., Int. J., 4(3), 197-228.
  14. Eliseev, E.A., Morozovska, A.N. and Glinchuk, M.D. (2009), "Pontaneous/flexoelectric/flexomagnetic effect in nanoferroics", Phys. Rev. B: Condens Matter, 79(16), 165-433.
  15. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710.
  16. Gao, Y. and Bando, Y. (2002), "Nanotechnology: Carbon nanothermometer containing gallium", Nature, 415(6872), 599-600.
  17. Ghorbanpour Arani, A., Shokravi, M. and Mozdianfard, M.R. (2012a), "Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs", J. Mech. Sci. Technol., 26(5), 1455-1462.
  18. Ghorbanpour Arani, A., Atabakhshian, V., Loghman, A., Shajari, A.R. and Amir, S. (2012b), "Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method", Physica B, 407(13), 2549-2555.
  19. Ghorbanpour Arani, A., Abdollahian, M., Kolahchi, R. and Rahmati, A.H. (2013a), "Electro-thermotorsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model", Compos. Part B-ng, 51, 291-299.
  20. Ghorbanpour Arani, A., Kolahchi, R. and Maraghi, Z.K. (2013b), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14-15), 7685-7707.
  21. Griffiths, D.J. (1989), Introduction to Electrodynamics, (4th Ed.), Prentice Hall, Englewood Cliffs, NJ, USA.
  22. Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78(5), 1093-1109.
  23. Hadjesfandiari, A.R. (2013), "Size-dependent piezoelectricity", Int. J. Solids Struct., 50(18), 2781-2791.
  24. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510.
  25. Hadjesfandiari, A.R. and Dargush, G.F. (2013), "Fundamental solutions for isotropic size-dependent couple stress elasticity", Int. J. Solid. Struct., 50(9), 1253-1265.
  26. Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mech, 225(6), 1555-1564.
  27. Hummer, G., Rasaiah, J.C. and Noworyta, J.P. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188-190.
  28. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018.
  29. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047.
  30. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014a), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Struct., 23(12), 1-17.
  31. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014b), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116(1), 626-636.
  32. Kerr, A.D. (1968), "An extension of the Kantorovich method", Q. Appl. Math., 26(2), 219-229.
  33. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", I and II. Proc. Kon. Neder. Akad. Weten. B., 67, 17-44.
  34. Kheibari, F. and Tadi Beni, Y. (2016), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583.
  35. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508.
  36. Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", Phys. Status Solidi B, 242(12), 2365-2390.
  37. Leissa, A.W. (1993), Vibration of Shells, NASA, Washington, USA.
  38. Li, A., Zhou, Sh., Zhou, Sh. and Wang, B. (2014), "Size-dependent analysis of a three-layer microbeam including electromechanical coupling", Compos. Struct., 116, 120-127.
  39. Liang, X. and Shen, S.P. (2013), "Size-dependent piezoelectricity and elasticity due to the electric fieldstrain gradient coupling and strain gradient elasticity", Int. J. Appl. Mech., 5(2), 1350015-1350031.
  40. Liu, Ch., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174.
  41. Liu, J., Chen, L., Xie, F., Fan, X. and Li, Ch. (2016), "On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory", Smart Struct. Syst., Int. J., 17(2), 257-274.
  42. Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198.
  43. Maranganti, R., Sharma, N.D. and Sharma, P. (2006), "Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions", Phys. Rev. B, 74(1), 014110.
  44. Markus, S. (1988), The Mechanics of Vibrations of Cylindrical Shells, Elsevier Science, New York, NY, USA.
  45. Mattia, D. and Gogotsi, Y. (2008), "Review: static and dynamic behavior of liquids inside carbon nanotubes", Microfluid Nanofluid, 5(3), 289-305.
  46. Mehralian, F. and Tadi Beni, Y. (2016), "Size-dependent torsional buckling analysis of functionally graded cylindrical shell", Compos. Part B: Eng., 94, 11-25.
  47. Mehralian, F., Tadi Beni, Y. and Ansari, R. (2016a), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61.
  48. Mehralian, F., Tadi Beni, Y. and Ansari, R. (2016b), "On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure", Int. J. Mech. Sci., 119, 155-169.
  49. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448.
  50. Mishima, T., Fujioka, H., Nagakari, S., Kamigaki, K. and Nambu, S. (1997), "Lattice image observations of nanoscale ordered regions in Pb (Mg1/3Nb2/3)O-3", Jpn. J. App. Phys., 36(9), 6141-6144.
  51. Mohammadi Dashtaki, P. and Tadi Beni, Y. (2014), "Effects of Casimir force and thermal stresses on the buckling of electrostatic nano-bridges based on couple stress theory", Arab. J. Sci. Eng., 39(7), 5753-5763.
  52. Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291(5510), 1947-1949.
  53. Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J., Wang, Z.L. and Lee, K.J. (2010), "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates", Nano Lett., 10(12), 4939-4943.
  54. Razavi, H., Faramarzi Babadi, A. and Tadi Beni, Y. (2016), "Free vibration analysis of functionally graded piezoelectr ic cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309.
  55. Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Des. 105, 341-351.
  56. Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123.
  57. Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mech., 227(6), 1575-1591.
  58. Sedighi, H.M. and Farjam, N. (2016), "A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction", Microsyst. Technol., 1-17.
  59. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct.res, 124, 55-64.
  60. Shayan-Amin, S., Dalir, H. and Farshidianfar, A. (2009), "Molecular dynamics simulation of double-walled carbon nanotube vibrations: Comparison with continuum elastic theories", J. Mech., 25(4), 337-343.
  61. Shojaeian, M. and Tadi Beni, Y. (2015), "Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges", Sensors Actuators A: Physical, 232, 49-62.
  62. Shojaeian. M., Tadi Beni, Y. and Ataei, H. (2016a), "Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory", Acta Astronautica, 118, 62-71.
  63. Shojaeian, M., Tadi Beni, Y. and Ataei, H. (2016b), "Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges", J. Phys. D: Appl. Phys., 49(29), 295-303.
  64. Shvartsman, V.V., Emelyanov, A.Y., Kholkin, A.L. and Safari, A. (2002), "Local hysteresis and grain size effects in Pb(Mg1/3Nb2/3)O-SbTiO3", Appl. Phys. Lett., 81(1), 117-119.
  65. Tadi Beni, Y. (2016a), "A nonlinear electro-mechanical analysis of nanobeams based on the size-dependent piezoelectricity theory", J. Mech., 65, 1-13.
  66. Tadi Beni, Y. (2016b), "Size-independent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intellig. Mater. Syst. Struct., 27, 2199-2215.
  67. Tadi Beni, Y. (2016c), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80.
  68. Tadi Beni, Y. and Abadyan, M. (2013), "Size-dependent pull-in instability of torsional nano-actuator", Physica Scripta, 88(5), 55801-55810.
  69. Tadi Beni, Y. and Zeighampour, H. (2014a), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47.
  70. Tadi Beni, Y. and Zeighampour, H. (2014b), "Analysis of conical shells in the framework of coupled stresses Theory", Int. J. Eng. Sci.nce, 81, 107-122.
  71. Tadi Beni, Y., Abadyan, M.R. and Noghrehabadi, A. (2011), "Investigation of Size Effect on the Pull-in Instability of Beamtype NEMS under van der Waals Attraction", Procedia Eng., 10, 1718-1723.
  72. Tadi Beni, Y., Koochi, A. and Abadyan, M.R. (2014), "Using modified couple stress theory for modeling the size dependent pull-in instability of torsional nano-mirror under Casimir force", Int. J. Optomechatron., 8(1), 47-71.
  73. Tsai, J.-L. and Tu, J.-F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des, 31(1), 194-199.
  74. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414.
  75. Voigt, W. (1887), "Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle [Theoretical studies on the elasticity relationships of crystals]" In: Abhandlungen zur Geschichte der mathematischen Wissenschaften, Springer, p. 34.
  76. Wang, Z.L. (2009), "ZnO nanowire and nanobelt platform for nanotechnology", Mater. Sci. Eng. R., 64(3-4), 33-71.
  77. Wang, G.-F., Yu, S.-W. and Feng, X.-Q. (2004), "A piezoelectric constitutive theory with rotation radient effects", Eur, J. Mech. A Solid, 23(3), 455-466.
  78. Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties (invited review)", Nano Res., 4(11), 1013-1098.
  79. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743.
  80. Zeighampour, H. and Tadi Beni, Y. (2014), "A shear deformable cylindrical shell model based on couple stress theory", Arch Appl. Mech., 85(4), 539-553.
  81. Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369.
  82. Zhao, M.-H., Wang Z.-L. and Mao S.X. (2004), "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope", Nano Lett., 4(4), 587-590.

Cited by

  1. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory vol.292, 2017,
  2. Analysis of size-dependent smart flexoelectric nanobeams vol.132, pp.11, 2017,
  3. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory vol.40, pp.1, 2018,
  4. Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque vol.133, 2017,
  5. Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment 2017,
  6. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations vol.521, 2017,
  7. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube vol.179, 2017,
  8. On the size-dependent magneto/electromechanical buckling of nanobeams vol.133, pp.10, 2018,
  9. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam vol.5, pp.8, 2018,
  10. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams vol.133, pp.3, 2018,
  11. On scale-dependent vibration of circular cylindrical nanoporous metal foam shells pp.1432-1858, 2019,
  12. Study on the small-scale effect on wave propagation characteristics of fluid-filled carbon nanotubes based on nonlocal fluid theory vol.11, pp.1, 2019,
  13. Size-dependent two-node axisymmetric shell element for buckling analysis with couple stress theory pp.2041-2983, 2019,