DOI QR코드

DOI QR Code

Electro-mechanical vibration of nanoshells using consistent size-dependent piezoelectric theory

  • Ebrahimi, Narges (Mechanical Engineering Department, Shahrekord University) ;
  • Beni, Yaghoub Tadi (Faculty of Engineering, Shahrekord University)
  • Received : 2016.07.28
  • Accepted : 2016.11.18
  • Published : 2016.12.30

Abstract

In this paper, the free vibrations of a short cylindrical nanotube made of piezoelectric material are studied based on the consistent couple stress theory and using the shear deformable cylindrical theory. This new model has only one length scale parameter and can consider the size effects of nanostructures in nanoscale. To model size effects in nanoscale, and considering the nanotube material which is piezoelectric, the consistent couple stress theory is used. First, using Hamilton's principle, the equations of motion and boundary condition of the piezoelectric cylindrical nanoshell are developed. Afterwards, using Navier approach and extended Kantorovich method (EKM), the governing equations of the system with simple-simple (S-S) and clamped-clamped (C-C) supports are solved. Afterwards, the effects of size parameter, geometric parameters (nanoshell length and thickness), and mechanical and electric properties (piezoelectric effect) on nanoshell vibrations are investigated. Results demonstrate that the natural frequency on nanoshell in nanoscale is extremely dependent on nanoshell size. Increase in size parameter, thickness and flexoelectric effect of the material leads to increase in frequency of vibrations. Moreover, increased nanoshell length and diameter leads to decreased vibration frequency.

Keywords

piezoelectric effect;flexoelectric effect;consistent couple-stress theory;electromechanical size-dependent;first order shear deformable theory;extended Kantorovich method

References

  1. Akgoz, B. and Civalek, O. (2013), "Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix", Computat. Mater. Sci., 77, 295-303. https://doi.org/10.1016/j.commatsci.2013.04.055
  2. Akgoz, B. and Civalek, O. (2014), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294.
  3. Akgoz, B. and Civalek, O. (2015), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
  4. Asghari, M., Kahrobaiyan, M.H. and Ahmadian, M.T. (2010), "A nonlinear Timoshenko beam formulation based on the modified couple stress theory", Int. J. Eng. Sci., 48(12), 1749-1761. https://doi.org/10.1016/j.ijengsci.2010.09.025
  5. Belkorissat, I., Sid, M., Houari, A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable mode", Steel Compos. Struct., Int. J., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  6. Buhlmann, S., Dwir, B., Baborowski, J. and Muralt, P. (2002), "Size effects in mesoscopic epitaxial ferroelectric structures: Increase of piezoelectric response with decreasing feature-size", Appl. Phys. Lett., 80(17), 3195-3197. https://doi.org/10.1063/1.1475369
  7. Chakraverty, S. and Behera, L. (2015), "Small scale effect on the vibration of non-uniform nanoplates", Struct. Eng. Mech., Int. J., 55(3), 495-510. https://doi.org/10.12989/sem.2015.55.3.495
  8. Chen, C.Q., Shi, Y., Zhang, Y.S., Zhu, J. and Yan, Y.J. (2006), "Size dependence of Young's modulus in ZnO nanowires", Phys. Rev. Lett., 96(7), 075505. https://doi.org/10.1103/PhysRevLett.96.075505
  9. Civalek, O. (2006), "The determination of frequencies of laminated conical shells via the discrete singular convolution method", J. Mech. Mater. Struct., 1(1), 163-182. https://doi.org/10.2140/jomms.2006.1.163
  10. Civalek, O. and Gurses, M. (2009), "Free vibration analysis of rotating cylindrical shells using discrete singular convolution technique", Int. J. Press. Vessels Pip., 86(10), 677-683. https://doi.org/10.1016/j.ijpvp.2009.03.011
  11. Cosserat, E. and Cosserat, F. (1909), Theorie des corps deformables [Theory of Deformable Bodies], A. Hermann et Fils, Paris, France.
  12. Cross, L.E. (2006), "Flexoelectric effects: charge separation in insulating solids subjected to elastic strain gradients", J. Mater. Sci., 41(1), 53-63. https://doi.org/10.1007/s10853-005-5916-6
  13. Ebrahimi, F. and Salari, E. (2016), "Thermal loading effects on electro-mechanical vibration behavior of piezoelectrically actuated inhomogeneous size-dependent Timoshenko nanobeams", Adv. Nano Res., Int. J., 4(3), 197-228.
  14. Eliseev, E.A., Morozovska, A.N. and Glinchuk, M.D. (2009), "Pontaneous/flexoelectric/flexomagnetic effect in nanoferroics", Phys. Rev. B: Condens Matter, 79(16), 165-433.
  15. Eringen, A.C. (1983), "On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves", J. Appl. Phys., 54(9), 4703-4710. https://doi.org/10.1063/1.332803
  16. Gao, Y. and Bando, Y. (2002), "Nanotechnology: Carbon nanothermometer containing gallium", Nature, 415(6872), 599-600.
  17. Ghorbanpour Arani, A., Shokravi, M. and Mozdianfard, M.R. (2012a), "Nonlocal electro-thermal transverse vibration of embedded fluid-conveying DWBNNTs", J. Mech. Sci. Technol., 26(5), 1455-1462. https://doi.org/10.1007/s12206-012-0307-9
  18. Ghorbanpour Arani, A., Atabakhshian, V., Loghman, A., Shajari, A.R. and Amir, S. (2012b), "Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method", Physica B, 407(13), 2549-2555. https://doi.org/10.1016/j.physb.2012.03.065
  19. Ghorbanpour Arani, A., Abdollahian, M., Kolahchi, R. and Rahmati, A.H. (2013a), "Electro-thermotorsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model", Compos. Part B-ng, 51, 291-299. https://doi.org/10.1016/j.compositesb.2013.03.017
  20. Ghorbanpour Arani, A., Kolahchi, R. and Maraghi, Z.K. (2013b), "Nonlinear vibration and instability of embedded double-walled boron nitride nanotubes based on nonlocal cylindrical shell theory", Appl. Math. Model., 37(14-15), 7685-7707. https://doi.org/10.1016/j.apm.2013.03.020
  21. Griffiths, D.J. (1989), Introduction to Electrodynamics, (4th Ed.), Prentice Hall, Englewood Cliffs, NJ, USA.
  22. Gurtin, M.E., Weissmuller, J. and Larche, F. (1998), "A general theory of curved deformable interfaces in solids at equilibrium", Philos. Mag. A, 78(5), 1093-1109. https://doi.org/10.1080/01418619808239977
  23. Hadjesfandiari, A.R. (2013), "Size-dependent piezoelectricity", Int. J. Solids Struct., 50(18), 2781-2791. https://doi.org/10.1016/j.ijsolstr.2013.04.020
  24. Hadjesfandiari, A.R. and Dargush, G.F. (2011), "Couple stress theory for solids", Int. J. Solids Struct., 48(18), 2496-2510. https://doi.org/10.1016/j.ijsolstr.2011.05.002
  25. Hadjesfandiari, A.R. and Dargush, G.F. (2013), "Fundamental solutions for isotropic size-dependent couple stress elasticity", Int. J. Solid. Struct., 50(9), 1253-1265. https://doi.org/10.1016/j.ijsolstr.2012.12.021
  26. Hosseini-Hashemi, S., Nahas, I., Fakher, M. and Nazemnezhad, R. (2014), "Surface effects on free vibration of piezoelectric functionally graded nanobeams using nonlocal elasticity", Acta Mech, 225(6), 1555-1564. https://doi.org/10.1007/s00707-013-1014-z
  27. Hummer, G., Rasaiah, J.C. and Noworyta, J.P. (2001), "Water conduction through the hydrophobic channel of a carbon nanotube", Nature, 414(6860), 188-190. https://doi.org/10.1038/35102535
  28. Ke, L.L. and Wang, Y.S. (2012), "Thermoelectric-mechanical vibration of piezoelectric nanobeams based on the nonlocal theory", Smart Mater. Struct., 21(2), 025018. https://doi.org/10.1088/0964-1726/21/2/025018
  29. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2012), "Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory", Compos. Struct., 94(6), 2038-2047. https://doi.org/10.1016/j.compstruct.2012.01.023
  30. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2014a), "The size-dependent vibration of embedded magneto-electro-elastic cylindrical nanoshells", Struct., 23(12), 1-17.
  31. Ke, L.L., Wang, Y.S. and Reddy, J.N. (2014b), "Thermo-electro-mechanical vibration of size-dependent piezoelectric cylindrical nanoshells under various boundary conditions", Compos. Struct., 116(1), 626-636. https://doi.org/10.1016/j.compstruct.2014.05.048
  32. Kerr, A.D. (1968), "An extension of the Kantorovich method", Q. Appl. Math., 26(2), 219-229. https://doi.org/10.1090/qam/99857
  33. Koiter, W.T. (1964), "Couple stresses in the theory of elasticity", I and II. Proc. Kon. Neder. Akad. Weten. B., 67, 17-44.
  34. Kheibari, F. and Tadi Beni, Y. (2016), "Size dependent electro-mechanical vibration of single-walled piezoelectric nanotubes using thin shell model", Mater. Des., 114, 572-583.
  35. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  36. Lazar, M., Maugin, G.A. and Aifantis, E.C. (2005), "On dislocations in a special class of generalized elasticity", Phys. Status Solidi B, 242(12), 2365-2390. https://doi.org/10.1002/pssb.200540078
  37. Leissa, A.W. (1993), Vibration of Shells, NASA, Washington, USA.
  38. Li, A., Zhou, Sh., Zhou, Sh. and Wang, B. (2014), "Size-dependent analysis of a three-layer microbeam including electromechanical coupling", Compos. Struct., 116, 120-127. https://doi.org/10.1016/j.compstruct.2014.05.009
  39. Liang, X. and Shen, S.P. (2013), "Size-dependent piezoelectricity and elasticity due to the electric fieldstrain gradient coupling and strain gradient elasticity", Int. J. Appl. Mech., 5(2), 1350015-1350031. https://doi.org/10.1142/S1758825113500154
  40. Liu, Ch., Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2013), "Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory", Compos. Struct., 106, 167-174. https://doi.org/10.1016/j.compstruct.2013.05.031
  41. Liu, J., Chen, L., Xie, F., Fan, X. and Li, Ch. (2016), "On bending, buckling and vibration of graphene nanosheets based on the nonlocal theory", Smart Struct. Syst., Int. J., 17(2), 257-274. https://doi.org/10.12989/sss.2016.17.2.257
  42. Loy, C.T., Lam, K.Y. and Shu, C. (1997), "Analysis of cylindrical shells using generalized differential quadrature", Shock Vib., 4(3), 193-198. https://doi.org/10.1155/1997/538754
  43. Maranganti, R., Sharma, N.D. and Sharma, P. (2006), "Electromechanical coupling in nonpiezoelectric materials due to nanoscale nonlocal size effects: Green's function solutions and embedded inclusions", Phys. Rev. B, 74(1), 014110. https://doi.org/10.1103/PhysRevB.74.014110
  44. Markus, S. (1988), The Mechanics of Vibrations of Cylindrical Shells, Elsevier Science, New York, NY, USA.
  45. Mattia, D. and Gogotsi, Y. (2008), "Review: static and dynamic behavior of liquids inside carbon nanotubes", Microfluid Nanofluid, 5(3), 289-305. https://doi.org/10.1007/s10404-008-0293-5
  46. Mehralian, F. and Tadi Beni, Y. (2016), "Size-dependent torsional buckling analysis of functionally graded cylindrical shell", Compos. Part B: Eng., 94, 11-25. https://doi.org/10.1016/j.compositesb.2016.03.048
  47. Mehralian, F., Tadi Beni, Y. and Ansari, R. (2016a), "Size dependent buckling analysis of functionally graded piezoelectric cylindrical nanoshell", Compos. Struct., 152, 45-61. https://doi.org/10.1016/j.compstruct.2016.05.024
  48. Mehralian, F., Tadi Beni, Y. and Ansari, R. (2016b), "On the size dependent buckling of anisotropic piezoelectric cylindrical shells under combined axial compression and lateral pressure", Int. J. Mech. Sci., 119, 155-169. https://doi.org/10.1016/j.ijmecsci.2016.10.006
  49. Mindlin, R.D. and Tiersten, H.F. (1962), "Effects of couple-stresses in linear elasticity", Arch. Ration. Mech. Anal., 11(1), 415-448. https://doi.org/10.1007/BF00253946
  50. Mishima, T., Fujioka, H., Nagakari, S., Kamigaki, K. and Nambu, S. (1997), "Lattice image observations of nanoscale ordered regions in Pb (Mg1/3Nb2/3)O-3", Jpn. J. App. Phys., 36(9), 6141-6144. https://doi.org/10.1143/JJAP.36.6141
  51. Mohammadi Dashtaki, P. and Tadi Beni, Y. (2014), "Effects of Casimir force and thermal stresses on the buckling of electrostatic nano-bridges based on couple stress theory", Arab. J. Sci. Eng., 39(7), 5753-5763. https://doi.org/10.1007/s13369-014-1107-6
  52. Pan, Z.W., Dai, Z.R. and Wang, Z.L. (2001), "Nanobelts of semiconducting oxides", Science, 291(5510), 1947-1949. https://doi.org/10.1126/science.1058120
  53. Park, K.-I., Xu, S., Liu, Y., Hwang, G.-T., Kang, S.-J., Wang, Z.L. and Lee, K.J. (2010), "Piezoelectric BaTiO3 thin film nanogenerator on plastic substrates", Nano Lett., 10(12), 4939-4943. https://doi.org/10.1021/nl102959k
  54. Razavi, H., Faramarzi Babadi, A. and Tadi Beni, Y. (2016), "Free vibration analysis of functionally graded piezoelectr ic cylindrical nanoshell based on consistent couple stress theory", Compos. Struct., 160, 1299-1309.
  55. Sahmani, S., Aghdam, M.M. and Akbarzadeh, A.H. (2016), "Size-dependent buckling and postbuckling behavior of piezoelectric cylindrical nanoshells subjected to compression and electrical load", Mater. Des. 105, 341-351. https://doi.org/10.1016/j.matdes.2016.05.065
  56. Sedighi, H.M. (2014), "Size-dependent dynamic pull-in instability of vibrating electrically actuated microbeams based on the strain gradient elasticity theory", Acta Astronautica, 95, 111-123. https://doi.org/10.1016/j.actaastro.2013.10.020
  57. Sedighi, H.M. and Bozorgmehri, A. (2016), "Dynamic instability analysis of doubly clamped cylindrical nanowires in the presence of Casimir attraction and surface effects using modified couple stress theory", Acta Mech., 227(6), 1575-1591. https://doi.org/10.1007/s00707-016-1562-0
  58. Sedighi, H.M. and Farjam, N. (2016), "A modified model for dynamic instability of CNT based actuators by considering rippling deformation, tip-charge concentration and Casimir attraction", Microsyst. Technol., 1-17.
  59. Sedighi, H.M., Daneshmand, F. and Abadyan, M. (2015), "Dynamic instability analysis of electrostatic functionally graded doubly-clamped nano-actuators", Compos. Struct.res, 124, 55-64. https://doi.org/10.1016/j.compstruct.2015.01.004
  60. Shayan-Amin, S., Dalir, H. and Farshidianfar, A. (2009), "Molecular dynamics simulation of double-walled carbon nanotube vibrations: Comparison with continuum elastic theories", J. Mech., 25(4), 337-343. https://doi.org/10.1017/S1727719100002823
  61. Shojaeian, M. and Tadi Beni, Y. (2015), "Size-dependent electromechanical buckling of functionally graded electrostatic nano-bridges", Sensors Actuators A: Physical, 232, 49-62. https://doi.org/10.1016/j.sna.2015.04.025
  62. Shojaeian. M., Tadi Beni, Y. and Ataei, H. (2016a), "Electromechanical buckling of functionally graded electrostatic nanobridges using strain gradient theory", Acta Astronautica, 118, 62-71. https://doi.org/10.1016/j.actaastro.2015.09.015
  63. Shojaeian, M., Tadi Beni, Y. and Ataei, H. (2016b), "Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges", J. Phys. D: Appl. Phys., 49(29), 295-303.
  64. Shvartsman, V.V., Emelyanov, A.Y., Kholkin, A.L. and Safari, A. (2002), "Local hysteresis and grain size effects in Pb(Mg1/3Nb2/3)O-SbTiO3", Appl. Phys. Lett., 81(1), 117-119. https://doi.org/10.1063/1.1490150
  65. Tadi Beni, Y. (2016a), "A nonlinear electro-mechanical analysis of nanobeams based on the size-dependent piezoelectricity theory", J. Mech., 65, 1-13.
  66. Tadi Beni, Y. (2016b), "Size-independent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams", J. Intellig. Mater. Syst. Struct., 27, 2199-2215. https://doi.org/10.1177/1045389X15624798
  67. Tadi Beni, Y. (2016c), "Size-dependent analysis of piezoelectric nanobeams including electro-mechanical coupling", Mech. Res. Commun., 75, 67-80. https://doi.org/10.1016/j.mechrescom.2016.05.011
  68. Tadi Beni, Y. and Abadyan, M. (2013), "Size-dependent pull-in instability of torsional nano-actuator", Physica Scripta, 88(5), 55801-55810. https://doi.org/10.1088/0031-8949/88/05/055801
  69. Tadi Beni, Y. and Zeighampour, H. (2014a), "Cylindrical thin-shell model based on modified strain gradient theory", Int. J. Eng. Sci., 78, 27-47. https://doi.org/10.1016/j.ijengsci.2014.01.004
  70. Tadi Beni, Y. and Zeighampour, H. (2014b), "Analysis of conical shells in the framework of coupled stresses Theory", Int. J. Eng. Sci.nce, 81, 107-122. https://doi.org/10.1016/j.ijengsci.2014.04.008
  71. Tadi Beni, Y., Abadyan, M.R. and Noghrehabadi, A. (2011), "Investigation of Size Effect on the Pull-in Instability of Beamtype NEMS under van der Waals Attraction", Procedia Eng., 10, 1718-1723. https://doi.org/10.1016/j.proeng.2011.04.286
  72. Tadi Beni, Y., Koochi, A. and Abadyan, M.R. (2014), "Using modified couple stress theory for modeling the size dependent pull-in instability of torsional nano-mirror under Casimir force", Int. J. Optomechatron., 8(1), 47-71. https://doi.org/10.1080/15599612.2014.893595
  73. Tsai, J.-L. and Tu, J.-F. (2010), "Characterizing mechanical properties of graphite using molecular dynamics simulation", Mater. Des, 31(1), 194-199. https://doi.org/10.1016/j.matdes.2009.06.032
  74. Toupin, R.A. (1962), "Elastic materials with couple-stresses", Arch. Ration. Mech. Anal., 11(1), 385-414. https://doi.org/10.1007/BF00253945
  75. Voigt, W. (1887), "Theoretische Studien fiber die Elastizitatsverhiltnisse der Kristalle [Theoretical studies on the elasticity relationships of crystals]" In: Abhandlungen zur Geschichte der mathematischen Wissenschaften, Springer, p. 34.
  76. Wang, Z.L. (2009), "ZnO nanowire and nanobelt platform for nanotechnology", Mater. Sci. Eng. R., 64(3-4), 33-71. https://doi.org/10.1016/j.mser.2009.02.001
  77. Wang, G.-F., Yu, S.-W. and Feng, X.-Q. (2004), "A piezoelectric constitutive theory with rotation radient effects", Eur, J. Mech. A Solid, 23(3), 455-466. https://doi.org/10.1016/j.euromechsol.2003.12.005
  78. Xu, S. and Wang, Z.L. (2011), "One-dimensional ZnO nanostructures: solution growth and functional properties (invited review)", Nano Res., 4(11), 1013-1098. https://doi.org/10.1007/s12274-011-0160-7
  79. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory for elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X
  80. Zeighampour, H. and Tadi Beni, Y. (2014), "A shear deformable cylindrical shell model based on couple stress theory", Arch Appl. Mech., 85(4), 539-553.
  81. Zeighampour, H. and Tadi Beni, Y. (2015), "Free vibration analysis of axially functionally graded nanobeam with radius varies along the length based on strain gradient theory", Appl. Math. Model., 39(18), 5354-5369. https://doi.org/10.1016/j.apm.2015.01.015
  82. Zhao, M.-H., Wang Z.-L. and Mao S.X. (2004), "Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope", Nano Lett., 4(4), 587-590. https://doi.org/10.1021/nl035198a

Cited by

  1. Buckling analysis of orthotropic protein microtubules under axial and radial compression based on couple stress theory vol.292, 2017, https://doi.org/10.1016/j.mbs.2017.07.002
  2. Analysis of size-dependent smart flexoelectric nanobeams vol.132, pp.11, 2017, https://doi.org/10.1140/epjp/i2017-11749-4
  3. Vibration analysis of size-dependent bimorph functionally graded piezoelectric cylindrical shell based on nonlocal strain gradient theory vol.40, pp.1, 2018, https://doi.org/10.1007/s40430-017-0938-y
  4. Surface energy effect on buckling behavior of the functionally graded nano-shell covered with piezoelectric nano-layers under torque vol.133, 2017, https://doi.org/10.1016/j.ijmecsci.2017.09.036
  5. Free vibration of magneto-electro-elastic nanobeams based on modified couple stress theory in thermal environment 2017, https://doi.org/10.1080/15376494.2017.1410902
  6. Calibration of nonlocal strain gradient shell model for buckling analysis of nanotubes using molecular dynamics simulations vol.521, 2017, https://doi.org/10.1016/j.physb.2017.06.058
  7. Size dependent analysis of wave propagation in functionally graded composite cylindrical microshell reinforced by carbon nanotube vol.179, 2017, https://doi.org/10.1016/j.compstruct.2017.07.071
  8. On the size-dependent magneto/electromechanical buckling of nanobeams vol.133, pp.10, 2018, https://doi.org/10.1140/epjp/i2018-12208-6
  9. Size dependent thermo-mechanical buckling of the flexoelectric nanobeam vol.5, pp.8, 2018, https://doi.org/10.1088/2053-1591/aad2ca
  10. On the thermal buckling of magneto-electro-elastic piezoelectric nanobeams vol.133, pp.3, 2018, https://doi.org/10.1140/epjp/i2018-11954-7
  11. On scale-dependent vibration of circular cylindrical nanoporous metal foam shells pp.1432-1858, 2019, https://doi.org/10.1007/s00542-018-4262-y
  12. Study on the small-scale effect on wave propagation characteristics of fluid-filled carbon nanotubes based on nonlocal fluid theory vol.11, pp.1, 2019, https://doi.org/10.1177/1687814018823324
  13. Size-dependent two-node axisymmetric shell element for buckling analysis with couple stress theory pp.2041-2983, 2019, https://doi.org/10.1177/0954406219830124