DOI QR코드

DOI QR Code

Vibration of antisymmetric angle-ply laminated plates under higher order shear theory

  • Javed, Saira (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Viswanathan, K.K. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Aziz, Z.A. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Karthik, K. (UTM Centre for Industrial and Applied Mathematics (UTM-CIAM), Ibnu Sina Institiute for Scientific & Industrial Research, Universiti Teknologi Malaysia) ;
  • Lee, J.H. (Department of Naval Architecture & Ocean Engineering, Inha University)
  • Received : 2016.05.09
  • Accepted : 2016.11.18
  • Published : 2016.12.30

Abstract

This paper deals with the analysis of vibration of antisymmetric angle-ply plates using spline method for higher order shear theory. Free vibration of laminated plates is addressed to show the capability of the present method in the vicinity of higher order shear deformation theory and simply supported edges of plates. The coupled differential equations are obtained in terms displacement and rotational functions. These displacement and rotational functions are approximated using cubic and quantic spline. A generalized eigenvalue problem is obtained and solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The antisymmetric angle-ply fiber orientation are taken as design variables. Numerical results enable us to examine the frequencies for various geometric and material parameters and accuracy and effectiveness of the proposed method is also verified by comparative study.

Acknowledgement

Supported by : Universiti Teknologi Malaysia

References

  1. Bert, C.W. and Chen, T.L.C. (1978), "Effect of shear deformation on vibration of antisymmetric angle-ply laminated rectangular plates", Int. J. Solids Struct., 14(6), 465-473. https://doi.org/10.1016/0020-7683(78)90011-2
  2. Ferreira, A.J.M. (2005), "Analysis of composite plates using a layerwise deformation theory and multiquadrics discretization", Mech. Adv. Mater. Struct., 12(2), 99-112. https://doi.org/10.1080/15376490490493952
  3. Ferreira, A.J.M., Roque, C.M.C. and Martins, P.A.L.S. (2003), "Analysis of composite plates using higherorder shear deformation theory and a finite point formulation based on the multiquadric radial basis function method", Compos. Part B: Eng., 34(7), 627-636. https://doi.org/10.1016/S1359-8368(03)00083-0
  4. Ghosh, A.K. and Dey, S.S. (1994), "Free vibration of laminated composite plates-a simple finite element based on higher order theory", Comput. Struct., 52(3), 397-404. https://doi.org/10.1016/0045-7949(94)90225-9
  5. Groh, R.M.J. and Weaver, P.M. (2015), "Static inconsistencies in certain axiomatic higher-order shear deformation theories for beams, plates and shells", Compos. Struct., 120, 231-245. https://doi.org/10.1016/j.compstruct.2014.10.006
  6. Kant, T. and Swaminathan, K. (2001), "Free vibration of isotropic, orthotropic, and multilayer plates based on higher order refined theories", J. Sound Vib., 241(2), 319-327. https://doi.org/10.1006/jsvi.2000.3232
  7. Kant, T. and Swaminathan, K. (2002), "Analytical solutions for the static analysis of laminated composite and sandwich plates based on a higher order refined theory", Compos. Struct., 56(4), 329-344. https://doi.org/10.1016/S0263-8223(02)00017-X
  8. Khandelwal, R.P., Chakrabarti, A. and Bhargava, P. (2 015), "Vibration response of laminated composite plate having weakly bonded layers", Appl. Math. Model., 39(17), 5073-5090. https://doi.org/10.1016/j.apm.2015.04.008
  9. Mackerle, J. (2002), "Finite element analyses of sandwich structures: A bibliography (1980-2001)", Eng. Computat., 19(2), 206-245. https://doi.org/10.1108/02644400210419067
  10. Mantari, J.L. and Granados, E.V. (2015), "Thermoelastic analysis of advanced sandwich plates based on a new quasi-3D hybrid type HSDT with 5 unknowns", Compos. Part B: Eng., 69, 317-334. https://doi.org/10.1016/j.compositesb.2014.10.009
  11. Mantari J.L. and Soares, C.G. (2015), "Five-unknowns generalized hybrid-type quasi-3D HSDT for advanced composite plates", Appl. Math. Model., 39(18), 5598-5615. https://doi.org/10.1016/j.apm.2015.01.020
  12. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  13. Mantari, J.L., Oktem, A.S. and Soares, C.G. (2012), "A new higher order shear deformation theory for sandwich and composite laminated plates", Compos. Part B: Eng., 43(3), 1489-1499. https://doi.org/10.1016/j.compositesb.2011.07.017
  14. Naserian-Nik, A.M. and Tahani, M. (2010), "Free vibration analysis of moderately thick rectangular laminated composite plates with arbitrary boundary conditions", Struct. Eng. Mech., Int. J., 35(2), 217-240. https://doi.org/10.12989/sem.2010.35.2.217
  15. Nayak, A.K., Moy, S.S.J. and Shenoi, R.A. (2002), "Free vibration analysis of composite sandwich plates based on Reddy's higher-order theory", Compos. Part B: Eng., 33(7), 505-519. https://doi.org/10.1016/S1359-8368(02)00035-5
  16. Neves, A.M.A., Ferreira, A.J.M., Carrera, E., Cinefra, M., Roque, C.M.C., Jorge, RM.N. and Soares, C.M.M. (2013), "Static, free vibration and buckling analysis of isotropic and sandwich functionally graded plates using a quasi-3D higher-order shear deformation theory and a meshless technique", Compos. Part B: Eng., 44(1), 657-674. https://doi.org/10.1016/j.compositesb.2012.01.089
  17. Noor, A.K. (1973), "Free vibration of multilayered composite plates", AIAA Journal, 11(7), 1038-1039. https://doi.org/10.2514/3.6868
  18. Noor, A.K., Burton, W.S. and Bert, C.W. (1996), "Computational models for sandwich panels and shells", Appl. Mech. Reviews, 49(3), 155-199. https://doi.org/10.1115/1.3101923
  19. Pagano, N.J. (1970), "Exact solutions for rectangular bidirectional composites and sandwich plates", J. Compos. Mater., 34, 20-34.
  20. Pai, P.F. and Schulz, M.J. (1999), "Shear correction factors and an energy-consistent beam theory", Int. J. Solids Struct., 36(10), 1523-1540. https://doi.org/10.1016/S0020-7683(98)00050-X
  21. Pekovic, O., Stupar, S., Simonovic, A., Svorcan, J. and Komarov, D. (2014), "Isogeometric bending analysis of composite plates based on a higher-order shear deformation theory", J. Mech. Sci. Technol., 28(8), 3153-3162. https://doi.org/10.1007/s12206-014-0724-z
  22. Phung-Van, P., Nguyen-Thoi, T., Bui-Xuan, T. and Lieu-Xuan, Q. (2015a), "A cell-based smoothed threenode Mindlin plate element (CS-FEM-MIN3) based on the C0-type higher-order shear deformation for geometrically nonlinear analysis of laminated composite plates", Computat. Mater. Sci., 96(B), 549-558. https://doi.org/10.1016/j.commatsci.2014.04.043
  23. Phung-Van, P., De Lorenzis, L., Thai, C.H., Abdel-Wahab, M. and Nguyen-Xuan, H. (2015b), "Analysis of laminated composite plates integrated with piezoelectric sensors and actuators using higher-order shear deformation theory and isogeometric finite elements", Computat. Mater. Sci., 96(B), 495-505. https://doi.org/10.1016/j.commatsci.2014.04.068
  24. Reddy, J.N. (1979), "Free vibration of antisymmetric angle-ply laminated plates including transverse shear deformation by the finite element method", J. Sound Vib., 66(4), 565-576. https://doi.org/10.1016/0022-460X(79)90700-4
  25. Reddy, J.N. (1997), Mechanics of Laminated Composite Plates, CRC Press, New York, NY, USA.
  26. Reddy, J.N. (2006), Theory and Analysis of Elastic Plates and Shells, CRC Press, Boca Raton, FL, USA.
  27. Reissner, E. (1972), "A consistent treatment of transverse shear deformations in laminated anisotropic plates", AIAA Journal, 10(5), 716-718. https://doi.org/10.2514/3.50194
  28. Reissner, E. and Stavsky, Y. (1961), "Bending and stretching of certain types of heterogeneous aelotropic elastic plates", J. Appl. Mech., 28(3), 402-408. https://doi.org/10.1115/1.3641719
  29. Swaminathan, K. and Patil, S.S. (2008a), "Higher order refined computational models for the free vibration analysis of antisymmetric angle-ply plates", J. Reinf. Plast. Compos., 27(5), 541-553. https://doi.org/10.1177/0731684407084125
  30. Swaminathan, K. and Patil, S.S. (2008b), "Analytical solutions using a higher order refined computational model with 12 degrees of freedom for the free vibration analysis of antisymmetric angle-ply plates", Compos. Struct., 82(2), 209-216. https://doi.org/10.1016/j.compstruct.2007.01.001
  31. Thai, C.H., Nguyen-Xuan, H., Bordas, S.P.A., Nguyen-Thanh, N. and Rabczuk, T. (2015), "Isogeometric analysis of laminated composite plates using the higher-order shear deformation theory", Mech. Adv. Mater. Struct., 22(6), 451-469. https://doi.org/10.1080/15376494.2013.779050
  32. Tran, L.V., Nguyen-Thoi, T., Thai, C.H. and Nguyen-Xuan, H. (2015), "An edge-based smoothed discrete shear gap method using the C0-type higher-order shear deformation theory for analysis of laminated composite plates", Mech. Adv. Mater. Struct., 22(4), 248-268. https://doi.org/10.1080/15376494.2012.736055
  33. Vinson, J.R. (2001), "Sandwich structures", Appl. Mech. Reviews, 54, 201-214. https://doi.org/10.1115/1.3097295
  34. Viswanathan, K.K. and Lee, S.K. (2007), "Free vibration of laminated cross-ply plates, including shear deformation by spline method", Int. J. Mech. Sci., 49(3), 352-363. https://doi.org/10.1016/j.ijmecsci.2006.08.016
  35. Wang, X. and Shi, G. (2015), "A refined laminated plate theory accounting for the third-order shear deformation and interlaminar transverse stress continuity", Appl. Math. Model., 39(18), 5659-5680. https://doi.org/10.1016/j.apm.2015.01.030
  36. Yang, H.T.Y., Saigal, S., Masud, A. and Kapania, R.K. (2000), "A survey of recent shell finite elements", Int. J. Numer. Method. Eng., 47(1-3), 101-127. https://doi.org/10.1002/(SICI)1097-0207(20000110/30)47:1/3<101::AID-NME763>3.0.CO;2-C
  37. Yang, Z., Chen, X., Zhang, X. and He, Z. (2013), "Free vibration and buckling analysis of plates using Bspline wavelet on the interval Mindlin element", Appl. Math. Model., 37(5), 3449-3466. https://doi.org/10.1016/j.apm.2012.07.055
  38. Zhen, W. and Wanji, C. (2006), "Free vibration of laminated composite and sandwich plates using global-local higher-order theory", J. Sound Vib., 298(1-2), 333-349. https://doi.org/10.1016/j.jsv.2006.05.022
  39. Zuo, H., Yang, Z., Chen, X., Xie, Y. and Zhang, X. (2014), "Bending, free vibration and buckling analysis of functionally graded plates via wavelet finite element method", Comput. Mater. Continua, 44(3), 167-204.
  40. Zuo, H., Yang, Z., Chen, X., Xie, Y. and Miao, H. (2015), "Analysis of laminated composite plates using wavelet finite element method and higher-order plate theory", Compos. Struct., 131(1), 248-258. https://doi.org/10.1016/j.compstruct.2015.04.064

Cited by

  1. A two-variable simplified nth-higher-order theory for free vibration behavior of laminated plates vol.182, 2017, https://doi.org/10.1016/j.compstruct.2017.09.041
  2. Vibration of Antisymmetric Angle-Ply Laminated Plates of Higher-Order Theory with Variable Thickness vol.2018, pp.1563-5147, 2018, https://doi.org/10.1155/2018/7323628