DOI QR코드

DOI QR Code

Dynamic instability analysis for S-FGM plates embedded in Pasternak elastic medium using the modified couple stress theory

  • Park, Weon-Tae (Division of Construction and Environmental Engineering, Kongju National University) ;
  • Han, Sung-Cheon (Department of Civil & Railroad Engineering, Daewon University College) ;
  • Jung, Woo-Young (Department of Civil Engineering, Gangneung-Wonju National University) ;
  • Lee, Won-Hong (Department of Civil Engineering, Gyeongnam National University of Science and Technology)
  • Received : 2016.06.23
  • Accepted : 2016.11.16
  • Published : 2016.12.30

Abstract

The modified couple stress-based third-order shear deformation theory is presented for sigmoid functionally graded materials (S-FGM) plates. The advantage of the modified couple stress theory is the involvement of only one material length scale parameter which causes to create symmetric couple stress tensor and to use it more easily. Analytical solution for dynamic instability analysis of S-FGM plates on elastic medium is investigated. The present models contain two-constituent material variation through the plate thickness. The equations of motion are derived from Hamilton's energy principle. The governing equations are then written in the form of Mathieu-Hill equations and then Bolotin's method is employed to determine the instability regions. The boundaries of the instability regions are represented in the dynamic load and excitation frequency plane. It is assumed that the elastic medium is modeled as Pasternak elastic medium. The effects of static and dynamic load, power law index, material length scale parameter, side-to-thickness ratio, and elastic medium parameter have been discussed. The width of the instability region for an S-FGM plate decreases with the decrease of material length scale parameter. The study is relevant to the dynamic simulation of micro structures embedded in elastic medium subjected to intense compression and tension.

Keywords

dynamic instability;functionally graded materials;elastic medium;plate theory;modified couple stress theory

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., Int. J., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  2. Akgoz, B. and Civalek, O. (2015a), "A microstructure-dependent sinusoidal plate model based on the strain gradient elasticity theory", Acta Mechanica, 226(7), 2277-2294. https://doi.org/10.1007/s00707-015-1308-4
  3. Akgoz, B. and Civalek, O. (2015b), "A novel microstructure-dependent shear deformable beam model", Int. J. Mech. Sci., 99, 10-20. https://doi.org/10.1016/j.ijmecsci.2015.05.003
  4. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  5. Ansari, R., Gholami, R. and Sahmani, S. (2011), "Free vibration analysis of size-dependent functionally graded microbeams based on a strain gradient Timoshenko beam theory", Compos. Struct., 94(1), 221-228. https://doi.org/10.1016/j.compstruct.2011.06.024
  6. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2014), "Nonlinear vibrations of functionally graded Mindlin microplates based on the modified couple stress theory", Compos. Struct., 114, 124-134. https://doi.org/10.1016/j.compstruct.2014.04.013
  7. Asghari, M. (2012), "Geometrically nonlinear micro-plate formulation based on the modified couple stress theory", Int. J. Eng. Sci., 51, 292-309. https://doi.org/10.1016/j.ijengsci.2011.08.013
  8. Asghari, M. and Taati, E. (2013), "A size-dependent model for functionally graded microplates for mechanical analyses", J. Vib. Control, 19(11), 1614-1632. https://doi.org/10.1177/1077546312442563
  9. Bao, G. and Wang, L. (1995), "Multiple cracking in functionally graded ceramic/metal coatings", Int. J. Solids Struct., 32, 2853-2871. https://doi.org/10.1016/0020-7683(94)00267-Z
  10. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Composites: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  11. Bolotin, V.V. (1964), The Dynamic Stability of Elastic Systems, Holden-Day, San Francisco, CA, USA.
  12. Bouderba, B., Houari, M.S.A. and Tounsi, A. (2013), "Thermomechanical bending response of FGM thick plates resting on Winkler-Pasternak elastic foundations", Steel Compos. Struct., Int. J., 14(1), 85-104. https://doi.org/10.12989/scs.2013.14.1.085
  13. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., Int. J., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  14. Chi, S.H. and Chung, Y.L. (2002), "Cracking in sigmoid functionally graded coating", J. Mech., 18, 41-53.
  15. Chong, A.C.M. and Lam, D.C.C. (1999), "Strain gradient plasticity effect in indentation hardness of polymers", J. Mater. Res., 14(10), 4103-4110. https://doi.org/10.1557/JMR.1999.0554
  16. Chung, Y.L. and Chi, S.H. (2001), "The residual stress of functionally graded materials", J. Chinese Inst. Civil Hydraul. Eng., 13, 1-9.
  17. Delale, F. and Erdogan, F. (1983), "The crack problem for a nonhomogeneous plane", ASME J. Appl. Mech., 50(3), 609-614. https://doi.org/10.1115/1.3167098
  18. Dey, P. and Singha, M.K. (2006), "Dynamic stability analysis of composite skew plates subjected to periodic in-plane load", Thin-Wall. Struct., 44(9), 937-942. https://doi.org/10.1016/j.tws.2006.08.023
  19. Erdogan, F. and Chen, Y.F. (1998), Interfacial Cracking of FGM/Metal Bonds, (K. Kokini Ed.), Ceramic Coating.
  20. Fares, M.E., Elmarghany, M.Kh. and Atta, D. (2009), "An efficient and simple refined theory for bending and vibration of functionally graded plates", Compos. Struct., 91(3), 296-305. https://doi.org/10.1016/j.compstruct.2009.05.008
  21. Feldman, E. and Aboudi, J. (1997), "Buckling analysis of functionally graded plates subjected to uniaxial loading", Compos. Struct., 38(1), 29-36. https://doi.org/10.1016/S0263-8223(97)00038-X
  22. Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W. (1994), "Strain gradient plasticity: Theory and experiment", Acta Metallurgica Et Materialia, 42(2), 475-487. https://doi.org/10.1016/0956-7151(94)90502-9
  23. Fu, Y. and Zhang, J. (2010), "Modeling and analysis of microtubules based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 42(5), 1741-1745. https://doi.org/10.1016/j.physe.2010.01.033
  24. Han, S.C., Lomboy, G.R. and Kim, K.D. (2008), "Mechanical vibration and buckling analysis of FGM plates and shells using a four-node quasi-conforming shell element", Int. J. Struct. Stab. Dyn., 8(2), 203-229. https://doi.org/10.1142/S0219455408002624
  25. Han, S.C., Lee, W.H. and Park, W.T. (2009), "Non-linear analysis of laminated composite and sigmoid functionally graded anisotropic structures using a higher-order shear deformable natural Lagrangian shell element", Compos. Struct., 89(1), 8-19. https://doi.org/10.1016/j.compstruct.2008.08.006
  26. Han, S.C., Park, W.T. and Jung, W.Y. (2016), "3D graphical dynamic responses of FGM plates on Pasternak elastic foundation based on quasi-3D shear and normal deformation theory", Compos. Part B, 95, 324-334. https://doi.org/10.1016/j.compositesb.2016.04.018
  27. Hirano, T. and Yamada, T. (1988), "Multi-paradigm expert system architecture based upon the inverse design concept", International Workshop on Artificial Intelligence for Industrial Applications, Hitachi, Japan.
  28. Javaheri, R. and Eslami, M.R. (2002), "Thermal buckling of functionally graded plates based on higher order theory", J. Therm. Stress., 25(7), 603-625. https://doi.org/10.1080/01495730290074333
  29. Jin, Z.H. and Paulino, G.H. (2001), "Transient thermal stress analysis of an edge crack in a functionally graded material", Int. J. Fracture, 107(1), 73-98. https://doi.org/10.1023/A:1026583903046
  30. Jung, W.Y. and Han, S.C. (2014), "Transient analysis of FGM and laminated composite structures using a refined 8-node ANS shell element", Compos. Part B, 56, 372-383. https://doi.org/10.1016/j.compositesb.2013.08.044
  31. Jung, W.Y. and Han, S.C. (2015), "Static and eigenvalue problems of Sigmoid Functionally Graded Materials (S-FGM) micro-scale plates using the modified couple stress theory", Appl. Math. Model., 39(12), 3506-3524. https://doi.org/10.1016/j.apm.2014.11.056
  32. Jung, W.Y., Park, W.T. and Han, S.C. (2014), "Bending and vibration analysis of S-FGM microplates embedded in Pasternak elastic medium using the modified couple stress theory", Int. J. Mech. Sci., 87, 150-162. https://doi.org/10.1016/j.ijmecsci.2014.05.025
  33. Kahrobaiyan, M.H., Rahaeifard, M., Tajalli, S.A. and Ahmadian, M.T. (2012), "A strain gradient functionally graded Euler-Bernoulli beam formulation", Int. J. Eng. Sci., 52, 65-76. https://doi.org/10.1016/j.ijengsci.2011.11.010
  34. Ke, L.L. and Wang, Y.S. (2011), "Flow-induced vibration and instability of embedded double walled carbon nanotubes based on a modified couple stress theory", Phys. E: Low-Dimens. Syst. Nanostruct., 43(5), 1031-1039. https://doi.org/10.1016/j.physe.2010.12.010
  35. Ke, L.L., Wang, Y.S. and Wang, Z.D. (2011), "Thermal effect on free vibration and buckling of sizedependent microbeams", Phys. E: Low-Dimens. Syst. Nanostruct., 43(7), 1387-1393. https://doi.org/10.1016/j.physe.2011.03.009
  36. Ke, L.L., Wang, Y.S., Yang, J. and Kitipornchai, S. (2012), "Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory", J. Sound Vib., 331(1), 94-106. https://doi.org/10.1016/j.jsv.2011.08.020
  37. Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J. and Tong, P. (2003), "Experiments and theory in strain gradient elasticity", J. Mech. Phys. Solids, 51(8), 1477-1508. https://doi.org/10.1016/S0022-5096(03)00053-X
  38. Lee, W.H., Han, S.C. and Park, W.T. (2015), "A study of dynamic instability for sigmoid functionally graded material plates on elastic foundation", J. Computat. Struct. Eng. Inst. Korea, 28(1), 85-92. [In Korean] https://doi.org/10.7734/COSEIK.2015.28.1.85
  39. Ma, H.M., Gao, X.L. and Reddy, J.N. (2008), "A microstructure-dependent Timoshenko beam model based on a modified couple stress theory", J. Mech. Phys. Solids, 56(12), 3379-3391. https://doi.org/10.1016/j.jmps.2008.09.007
  40. Ma, H.M., Gao, X.L. and Reddy, J.N. (2011), "A non-classical Mindlin plate model based on a modified couple stress theory", Acta Mech., 220(1-4), 217-235. https://doi.org/10.1007/s00707-011-0480-4
  41. Malekzadeh, P. and Shojaee, M. (2013), "Free vibration of nanoplates based on a nonlocal two-variable refined plate theory", Compos. Struct., 95, 443-452. https://doi.org/10.1016/j.compstruct.2012.07.006
  42. Mantari, J.L., Oktem, A.S. and Guedes Soares, C. (2011), "Static and dynamic analysis of laminated composite and sandwich plates and shells by using a new higher-order shear deformation theory", Compos. Struct., 94(1), 37-49. https://doi.org/10.1016/j.compstruct.2011.07.020
  43. Matsunaga, H. (2008), "Free vibration and stability of functionally graded plates according to a 2-D higherorder deformation theory", Compos. Struct., 82(4), 499-512. https://doi.org/10.1016/j.compstruct.2007.01.030
  44. Mindlin, R.D. (1964), "Microstructure in linear elasticity", Arch Rational Mech. Anal., 16(1), 51-78. https://doi.org/10.1007/BF00248490
  45. Nedri, K., El Meiche, N. and Tounsi, A. (2014), "Free vibration analysis of laminated composite plates resting on elastic foundations by using a refined hyperbolic shear deformation theory", Mech. Compos. Mater., 49(6), 641-650. https://doi.org/10.1007/s11029-013-9380-0
  46. Pasternak, P.L. (1954), On a New Method of Analysis of an Elastic Foundation by Means of Two Foundation Constants, Gos. Izd. Lip. po Strait i Arkh. [In Russian]
  47. Praveen, G.N. and Reddy, J.N. (1998), "Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates", Int. J. Solid. Struct., 35(33), 4457-4476. https://doi.org/10.1016/S0020-7683(97)00253-9
  48. Reddy, J.N. (2004), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, (2nd Ed.), CRC Press, Boca Raton, FL, USA.
  49. Sahmani, S. and Ansari, R. (2013), "On the free vibration response of functionally graded higher-order shear deformable microplates based on the strain gradient elasticity theory", Compos. Struct., 95, 430-442. https://doi.org/10.1016/j.compstruct.2012.07.025
  50. Sahmani, S., Ansari, R., Gholami, R. and Darvizeh, A. (2013), "Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory", Compos.: Part B, 51, 44-53. https://doi.org/10.1016/j.compositesb.2013.02.037
  51. Salehipour, H., Nahvi, H. and Shahidi, A.R. (2015), "Exact closed-form free vibration analysis for functionally graded micro/nano plates based on modified couple stress and three-dimensional elasticity theories", Compos. Struct., 124, 283-291. https://doi.org/10.1016/j.compstruct.2015.01.015
  52. Shen, H.S. and Wang, Z.X. (2012), "Assessment of Voigt and Mori-Tanaka models for vibration analysis of functionally graded plates", Compos. Struct., 94(7), 2197-2208. https://doi.org/10.1016/j.compstruct.2012.02.018
  53. Simsek, M. and Reddy, J.N. (2013), "Bending and vibration of functionally graded microbeams using a new higher order beam theory and the modified couple stress theory", Int. J. Eng. Sci., 64, 37-53. https://doi.org/10.1016/j.ijengsci.2012.12.002
  54. Stolken, J.S. and Evans, A.G. (1998), "Microbend test method for measuring the plasticity length scale", Acta Metallurgica Et Materialia, 46(14), 5109-5115. https://doi.org/10.1016/S1359-6454(98)00153-0
  55. Thai, H.T. and Choi, D.H. (2013), "Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory", Compos. Struct., 95, 142-153. https://doi.org/10.1016/j.compstruct.2012.08.023
  56. Thai, H.T. and Kim, S.E. (2015), "A review of theories for the modeling and analysis of functionally graded plates and shells", Compos. Struct., 128, 70-86. https://doi.org/10.1016/j.compstruct.2015.03.010
  57. Thai, H.T., Vo, T.P., Nguyen, T.K. and Lee, J. (2015), "Size-dependent behavior of functionally graded sandwich microbeams based on the modified couple stress theory", Compos. Struct., 123, 337-349. https://doi.org/10.1016/j.compstruct.2014.11.065
  58. Tsiatas, G.C. (2009), "A new Kirchhoff plate model based on a modified couple stress theory", Int. J. Solids Struct., 46(13), 2757-2764. https://doi.org/10.1016/j.ijsolstr.2009.03.004
  59. Winkler, E. (1867), Theory of Elasticity and Strength, Dominicus, Prague, Czech Republic.
  60. Yang, F., Chong, A.C.M., Lam, D.C.C. and Tong, P. (2002), "Couple stress based strain gradient theory of elasticity", Int. J. Solids Struct., 39(10), 2731-2743. https://doi.org/10.1016/S0020-7683(02)00152-X

Cited by

  1. Determination of the excitation frequencies of laminated orthotropic non-homogeneous conical shells vol.132, 2018, https://doi.org/10.1016/j.compositesb.2017.08.013