DOI QR코드

DOI QR Code

Isolation and Characterization of a New Methanobacterium formicicum KOR-1 from an Anaerobic Digester Using Pig Slurry

  • Battumur, Urantulkhuur ;
  • Yoon, Young-Man ;
  • Kim, Chang-Hyun
  • Received : 2015.06.11
  • Accepted : 2015.07.17
  • Published : 2016.04.01

Abstract

A new methanogen was isolated from an anaerobic digester using pig slurry in South Korea. Only one strain, designated KOR-1, was characterized in detail. Cells of KOR-1 were straight or crooked rods, non-motile, 5 to $15{\mu}m$ long and $0.7{\mu}m$ wide. They stained Gram-positive and produced methane from $H_2+CO_2$ and formate. Strain KOR-1 grew optimally at $38^{\circ}C$. The optimum pH for growth was 7.0. The strain grew at 0.5% to 3.0% NaCl, with optimum growth at 2.5% NaCl. The G+C content of genomic DNA of strain KOR-1 was 41 mol%. The strain tolerated ampicillin, penicillin G, kanamycin and streptomycin but tetracycline inhibited cell growth. A large fragment of the 16S rRNA gene (~1,350 bp) was obtained from the isolate and sequenced. Comparison of 16S rRNA genes revealed that strain KOR-1 is related to Methanobacterium formicicum (98%, sequence similarity), Methanobacterium bryantii (95%) and Methanobacterium ivanovii (93%). Phylogenetic analysis of the deduced mcrA gene sequences confirmed the closest relative as based on mcrA gene sequence analysis was Methanobacterium formicicum strain (97% nucleic acid sequence identity). On the basis of physiological and phylogenetic characteristics, strain KOR-1 is proposed as a new strain within the genus Methanobacterium, Methanobacterium formicicum KOR-1.

Keywords

Methanogen;Anaerobic Digester;16S rRNA;mcrA;Methanobacterium formicicum

References

  1. Balch, W. E., G. E. Fox, L. J. Magrum, C. R. Woese, and R. S. Wolfe. 1979. Methanogens: Reevaluation of a unique biological group. Microbiol. Rev. 43:260-296.
  2. Boone, D. R. 1987. Request for an opinion: Replacement of the type strain of Methanobacterium formicicum and reinstatement of Methanobacterium bryantii sp. nov. nom. rev. (ex Balch and Wolfe, 1981) with M.o.H. (DSM 863) as the type strain. Int. J. Syst. Evol. Microbiol. 37:172-173.
  3. Boone, D. R. 2001. Genus I. Methanobacterium. In: Bergey's Manual of Systematic Bacteriology, 2nd Ed. Vol 1 (Eds. D. R. Boone and R. W. Castenholz). Springer, New York, USA. pp. 215-218.
  4. Bryant, M. P. and D. R. Boone. 1987. Isolation and characterization of Methanobacterium formicicum MF. Int. J. Syst. Evol. Microbiol. 37:171.
  5. Bryant, M. P., E. A. Wolin, M. J. Wolin, and R. S. Wolfe. 1967. Methanobacillus omelianskii, a symbiotic association of two species of bacteria. Arch. Mikrobiol. 59:20-31. https://doi.org/10.1007/BF00406313
  6. Cardinali-Rezende, J., L. F. D. B. Colturato, T. D. B. Colturato, E. Chartone-Souza, A. M. A. Nascimento, and J. L. Sanz. 2012. Prokaryotic diversity and dynamics in a full-scale municipal solid waste anaerobic reactor from start-up to steady-state conditions. Bioresour. Technol. 119:373-383. https://doi.org/10.1016/j.biortech.2012.05.136
  7. Chopra, I. and T. G. B. Howe. 1978. Bacterial resistance to the tetracyclines. Microbiol. Rev. 42:707-724.
  8. Chouari, R., D. Le Paslier, P. Daegelen, P. Ginestet, J. Weissenbach, and A. Sghir. 2005. Novel predominant archaeal and bacterial groups revealed by molecular analysis of an anaerobic sludge digester. Environ. Microbiol. 7:1104-1115. https://doi.org/10.1111/j.1462-2920.2005.00795.x
  9. Cuzin, N., A. S. Ouattara, M. Labat, and J.-L. Garcia. 2001. Methanobacterium congolense sp. nov., from a methanogenic fermentation of cassava peel. Int. J. Syst. Evol. Microbiol. 51: 489-493. https://doi.org/10.1099/00207713-51-2-489
  10. Garcia, J.-L. 1990. Taxonomy and ecology of methanogens. FEMS Micobiol. Rev. 87:297-308. https://doi.org/10.1111/j.1574-6968.1990.tb04928.x
  11. Garcia, J.-L., B. K. C. Patel, and B. Ollivier. 2000. Taxonomic, phylogenetic, and ecological diversity of methanogenic archaea. Anaerobe 6:205-226. https://doi.org/10.1006/anae.2000.0345
  12. GroBkopf, R., P. H. Janssen, and W. Liesack. 1998. Diversity and structure of the methanogenic community in anoxic rice paddy soil microcosms as examined by cultivation and direct 16S rRNA gene sequence retrieval. Appl. Environ. Microbiol. 64: 960-969.
  13. Hales, B. A., C. Edwards, D. A. Ritchie, G. Hall, R. W. Pickup, and J. R. Saunders. 1996. Isolation and identification of methanogen-specific DNA from blanket bog peat by PCR amplification and sequence analysis. Appl. Environ. Microbiol. 62:668-675.
  14. Hilpert, R., J. Winter, W. Hammes, and O. Kandler. 1981. The sensitivity of archaebacteria to antibiotics. Zbl. Bakt. Hyg. I. Abt. Orig. 2:11-20.
  15. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14:1-49.
  16. Joulian, C. J., B. K. C. Patel, B. Ollivier, J.-L. Garcia, and P. A. Roger. 2000. Methanobacterium oryzae sp. nov., a novel methanogenic rod isolated from a Philippines ricefield. Int. J. Syst. Evol. Microbiol. 50:525-528. https://doi.org/10.1099/00207713-50-2-525
  17. Kim, Y.-S., Y.-M. Yoon, C.-H. Kim and J. Giersdort. 2012. Status of biogas technologies and policies in South Korea. Renew. Sustain. Energy Rev. 16:3430-3438. https://doi.org/10.1016/j.rser.2012.02.075
  18. Kotelnikova, S., A. J. L. Macario, and K. Pedersen. 1998. Methanobacterium subterraneum sp. nov., a new alkaliphilic, eurythermic and halotolerant methanogen isolated from deep granitic groundwater. Int. J. Syst. Evol. Microbiol. 48:357-367.
  19. Krivushin, K. V., V. A. Shcherbakova, L. E. Petrovskaya, and E. M. Rivkina. 2010. Methanobacterium veterum sp. nov., from ancient Siberian permafrost. Int. J. Syst. Evol. Microbiol. 60: 455-459. https://doi.org/10.1099/ijs.0.011205-0
  20. Luton, P. E., J. M. Wayne, R. J. Sharp, and P. W. Riley. 2002. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 148:3521-3530. https://doi.org/10.1099/00221287-148-11-3521
  21. Ma, K., X. Liu, and X. Dong. 2005. Methanobacterium beijingense sp. nov., a novel methanogen isolated from anaerobic digesters. Int. J. Syst. Evol. Microbiol. 55:325-329. https://doi.org/10.1099/ijs.0.63254-0
  22. Morvan, B., F. Bonnemoy, G. Fonty, and P. Gouet. 1996. Quantitative determination of $H_2$-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr. Microbiol. 32:129-133. https://doi.org/10.1007/s002849900023
  23. Nettmann, E., I. Bergmann, K. Mundt, B. Linke, and M. Klocke. 2008. Archaea diversity within a commercial biogas plant utilizing herbal biomass determined by 16S rDNA and mcrA analysis. J. Appl. Microbiol. 105:1835-1850. https://doi.org/10.1111/j.1365-2672.2008.03949.x
  24. Oren, A. 2014. The family Methanobacteriaceae. In: The Prokaryotes: Other Major Lineages of Bacteria and the Archaea (Eds. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson). Springer, Berlin, Germany. pp. 165-193.
  25. Patel, G. B., G. D. Sprott, and J. E. Fein. 1990. Isolation and characterization of Methanobacterium espanolae sp. nov., a mesophilic, moderately acidiphilic methanogen. Int. J. Syst. Bacteriol. 40:12-18. https://doi.org/10.1099/00207713-40-1-12
  26. Shlimon, A. G., M. W. Friedrich, H. Niemann, N. B. Ramsing, and K. Finster. 2004. Methanobacterium aarhusense sp. nov., a novel methanogen isolated from a marine sediment (Aarhus Bay, Denmark). Int. J. Syst. Evol. Microbiol. 54:759-763. https://doi.org/10.1099/ijs.0.02994-0
  27. Simankova, M. V., O. R. Kotsyurbenko, T. Lueders, A. N. Nozhevnikova, B. Wagner, R. Conrad, and M. W. Friedrich. 2003. Isolation and characterization of new strains of methanogens from cold terrestrial habitats. Syst. Appl. Microbiol. 26:312-318. https://doi.org/10.1078/072320203322346173
  28. Sly, L. I., L. L. Blackall, P. C. Kraat, T. Tian-Shen, and V. Sangkhobol. 1986. The use of second derivative plots for the determination of mol% guanine plus cytosine of DNA by the thermal denaturation method. J. Microbiol. Methods 5:139-156. https://doi.org/10.1016/0167-7012(86)90009-6
  29. Sowers, K. R. and H. J. Schreier. 1995. Media for methanogens. In: Archaea - A Laboratory Manual: Methanogens (Eds. K. R. Sowers and H. J. Schreier). Cold Spring Harbor Laboratory Press, New York, USA. pp. 459-489.
  30. Tamura, K., J. Dudley, M. Nei, and S. Kumar. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599. https://doi.org/10.1093/molbev/msm092
  31. Wasserfallen, A., J. Nolling, P. Pfister, J. Reeve, and E. Conway de Macario. 2000. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 50:43-53. https://doi.org/10.1099/00207713-50-1-43
  32. Whitman, W. B., T. L. Bowen, and D. R. Boone. 2014. The methanogenic bacteria. In: The Prokaryotes: Other Major Lineages of Bacteria and the Archaea (Eds. E. Rosenberg, E. F. DeLong, S. Lory, E. Stackebrandt, and F. Thompson). Springer, Berlin, Germany. pp. 123-164.
  33. Worakit, S., D. R. Boone, R. A. Mah, M.-E. Abdel-Samie, and M. M. El-Halwagi. 1986. Methanobacterium alcaliphilum sp. nov., an $H_2$-utilizing methanogen that grows at high pH values. Int. J. Syst. Bacteriol. 36:380-382. https://doi.org/10.1099/00207713-36-3-380

Cited by

  1. Isolation and characterization of new Methanosarcina mazei strains KOR-3, -4, -5, and -6 from an anaerobic digester using pig slurry vol.30, pp.8, 2017, https://doi.org/10.5713/ajas.16.0830
  2. Non-Psychrophilic Methanogens Capable of Growth Following Long-Term Extreme Temperature Changes, with Application to Mars vol.6, pp.2, 2018, https://doi.org/10.3390/microorganisms6020034

Acknowledgement

Supported by : Hankyong National University