Development of a Novel, Anti-idiotypic Monoclonal Anti-prolactin Antibody That Mimics the Physiological Functions of Prolactin

  • Wang, Meng (Endocrine Department, Yidu Central Hospital of Weifang) ;
  • Zhang, Dian-Cai (Dermatological Department, Yidu Central Hospital of Weifang) ;
  • Wang, Shen-Tian (Endocrine Department, Yidu Central Hospital of Weifang) ;
  • Li, Ming-Long (China Shandong Provincial Hospital)
  • Received : 2015.06.26
  • Accepted : 2015.09.03
  • Published : 2016.04.01


In this work, we prepared a panel of monoclonal anti-idiotypic antibodies to ovine prolactin (oPRL) by the hybridoma technique. Among these antibodies, one anti-idotypic antibody (designated B7) was chosen for further characterization by a series of experiments. We first demonstrated that B7 behaved as a typical $Ab2{\beta}$ based on a series of enzyme-linked immunosorbent assays. Subsequently, the results of a competitive receptor-binding assay confirmed that B7 could specifically bind to the prolactin receptor (PRLR) expressed on target cells. Finally, we examined its biological activities in CHO-PRLR and Nb2 cells and observed that B7 could activate Janus kinase 2-signal transducer and activator of transcription signalling in CHO-PRLR and Nb2 cells and induce BaF3 proliferation. The present study suggests that i) B7 can serve as a PRLR agonist or PRL mimic and has potential applications in regulating mammary gland development, milk production and maintenance of lactation in domestic animals and ii) B7 may be a biological reagent that can be used to explore the mechanism of PRLR-mediated intracellular signalling.


  1. Amit, T., R. J. Barkey, M. Gavish, and M. B. H. Youdim. 1986. Antiidiotypic antibodies raised against anti-prolactin (prl) antibodies recognize the prl receptor. Endocrinology 118:835-843.
  2. Bar-Pelled, U., E. Maltz, I. Bruckental, Y. Folman, Y. Kali, H. Gacitua, A. R. Lehrer., C. H. Knigh., B. Robinzon., H. Voet, and H. Tagari. 1995. Relationship between frequent milking or suckling in early lactation and milk production of high producing dairy cows. J. Dairy Sci. 78:2726-2736.
  3. Bole-Feysot, C., V. Goffin, M. Edery, N. Binart, and P. A. Kelly. 1998. Prolactin (PRL) and its receptor: actions, signal transduction pathways and phenotypes observed in PRL receptor knockout mice. Endocr. Rev. 19:225-268.
  4. Brooks, C. L. 2012. Molecular mechanisms of prolactin and its receptor. Endocr. Rev. 33:504-525.
  5. Clevenger, C. V., T. Torigoe, and J. C. Reed. 1994. Prolactin induces rapid phosphorylation and activation of prolactin receptor-associated RAF-1 kinase in a T-cell line. J. Biol. Chem. 269:5559-5565.
  6. Djiane, J., I. Dusanter-Fourt, M. Katoh, and P. A. Kelly. 1985. Biological activities of binding site specific monoclonal antibodies to prolactin receptors of rabbit mammary gland. J. Biol. Chem. 260:11430-11435.
  7. Djiane, J., L. M. Houdebine, and P. A. Kelly. 1981. Prolactin-like activity of anti-prolactin receptor antibodies on casein and DNA synthesis in the mammary gland. Proc. Natl. Acad. Sci. USA. 78:7445-7448.
  8. Dybus, A. 2002. Associations of growth hormone (GH) and prolactin (PRL) genes polymorphisms with milk production traits in Polish Black-and-White cattle. Anim. Sci. Pap. Rep. 20:203-212.
  9. Farmer, C., M. T. Sorensen, and D. Petitclerc. 2000. Inhibition of prolactin in the last trimester of gestation decreases mammary gland development in gilts. J. Anim. Sci. 78:1303-1309.
  10. Feuermann, Y., S. J. Mabjeesh, and A. Shamay. 2004. Leptin affects prolactin action on milk protein and fat synthesis in the bovine mammary gland. J. Dairy Sci. 87:2941-2946.
  11. Freeman, M. E., B. Kanyicska, A. Lerant, and G. Nagy. 2000. Prolactin: Structure, function, and regulation of secretion. Physiol. Rev. 80:1523-1631.
  12. He, F., D. Sun, Y. Yu, Y. Wang, and Y. Zhang. 2006. Association between SNPs within prolactin gene and milk performance traits in Holstein dairy cattle. Asian Australas. J. Anim. 19:1384-1389.
  13. Jerne, N. K. 1974. Towards a network theory of the immune system. Ann. Immunol. 125:373-389.
  14. Knight, C. H. 2001. Overview of prolactin's role in farm animal lactation. Livest. Prod. Sci. 70:87-93.
  15. Lan, H. N., W. Li, Z. L. Fu, Y. H. Yang, T. C. Wu, Y. Liu, H. Zhang, H. Z. Cui, Y. M. Li, P. Hong, J. S. Liu, and X. Zheng. 2014. Differential intracellular signalling properties of the growth hormone receptor induced by the activation of an anti-GHR antibody. Mol. Cell. Endocrinol. 390:54-64.
  16. Lan, H. N., H. L. Jiang, W. Li, T. C. Wu, P. Hong, Y. M. Li, H. Zhang, H. Z. Cui, and X. Zhing. 2015. Development and characterization of a novel anti-idiotypic monoclonal antibody to growth hormone, which can mimic physiological functions of growth hormone in primary porcine hepatocytes. Asian Australas. J. Anim. Sci. 28:573-583.
  17. Lan, H. N, X. Zheng, M. A. Khan, and S. Li. 2015. Anti-idiotypic antibody: A new strategy for the development of a growth hormone receptor antagonist. Int. J. Biochem. Cell. B. 68:101-108.
  18. McLaughlin, C. L., J. C. Byatt, D. F. Curran, J. J. Veenhuizen, M. F. McGrath, F. C. Buonomo, R. L. Hintz, and C. A. Baile. 1997. Growth performance, endocrine, and metabolite responses of finishing hogs to porcine prolactin. J. Anim. Sci. 75:959-967.
  19. Okamura, H., J. Zachwieja, S. Raguet, and P. A. Kelly. 1989. Characterization and Applications of Monoclonal Antibodies to the prolactin receptor. Endocrinology 124:2499-2508.
  20. Ramos, A. M., C. A. P. Matos, P. A. Russo-Almeida, C. M. V. Bettencourt, J. Matos, A. Martins, C. Pinheiro, and T. Rangel-Figueiredo. 2009. Candidate genes for milk production traits in Portuguese dairy sheep. Small Rumin. Res. 82:117-121.
  21. Reddy, I. J., C. G. David, and K. Singh. 2005. Relationship between Intersequence pauses, laying persistency and concentration of prolactin during the productive period in white Leghorn hens. Asian Australas. J. Anim. Sci. 18:686-691.
  22. Rui, H., J. J. Lebrun, R. A. Kirken, P. A. Kelly, and W. L. Farrar. 1994. JAK2 activation and cell proliferation induced by antibody-mediated prolactin receptor dimerization. Endocrinology 135:1299-1306.
  23. Tygesen, M. P., M. O. Nielsen, P. Norgaard, H. Ranvig, A. P. Harrison, and A. H. Tauson. 2008. Late gestational nutrient restriction: Effects on ewes' metabolic and homeorhetic adaptation, consequences for lamb birth weight and lactation performance. Arch. Anim. Nutr. 62:44-59.