Generation of Fibroblasts Lacking the Sal-like 1 Gene by Using Transcription Activator-like Effector Nuclease-mediated Homologous Recombination

  • Kim, Se Eun (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Ji Woo (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kim, Yeong Ji (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University) ;
  • Kwon, Deug-Nam (Department of Animal Biotechnology, Konkuk University) ;
  • Kim, Jin-Hoi (Department of Animal Biotechnology, Konkuk University) ;
  • Kang, Man-Jong (Department of Animal Science, College of Agriculture and Life Science, Chonnam National University)
  • Received : 2015.03.20
  • Accepted : 2015.08.07
  • Published : 2016.04.01


The Sal-like 1 gene (Sall1) is essential for kidney development, and mutations in this gene result in abnormalities in the kidneys. Mice lacking Sall1 show agenesis or severe dysgenesis of the kidneys. In a recent study, blastocyst complementation was used to develop mice and pigs with exogenic organs. In the present study, transcription activator-like effector nuclease (TALEN)-mediated homologous recombination was used to produce Sall1-knockout porcine fibroblasts for developing knockout pigs. The vector targeting the Sall1 locus included a 5.5-kb 5' arm, 1.8-kb 3' arm, and a neomycin resistance gene as a positive selection marker. The knockout vector and TALEN were introduced into porcine fibroblasts by electroporation. Antibiotic selection was performed over 11 days by using $300{\mu}g/mL$ G418. DNA of cells from G418-resistant colonies was amplified using polymerase chain reaction (PCR) to confirm the presence of fragments corresponding to the 3' and 5' arms of Sall1. Further, mono- and bi-allelic knockout cells were isolated and analyzed using PCR-restriction fragment length polymorphism. The results of our study indicated that TALEN-mediated homologous recombination induced bi-allelic knockout of the endogenous gene.


Supported by : Rural Development Administration


  1. Ahn, K. S., Y. J. Kim, M. Kim, B. H. Lee, S. Y. Heo, M. J. Kang, Y. K. Kang, J. W. Lee, K. K. Lee, J. H. Kim, W. G. Nho, S. S. Hwang, J. S. Woo, J. K. Park, S. B. Park, and H. Shim. 2011. Resurrection of an alpha-1,3-galactosyltransferase genetargeted miniature pig by recloning using postmortem ear skin fibroblast. Theriogenology 75:933-939.
  2. Carlson, D. F., W. Tan, S. G. Lillico, D. Stverakova, C. Proudfoot, M. Christian, D. F. Voytas, C. R. Long, C. B. Whitelaw, and S. C. Fahrenkrug. 2012. Efficient TALEN-mediated gene knockout in livestock. Proc. Natl. Acad. Sci. USA. 109:17382-17387.
  3. Dai, Y., T. D. Vaught, J. Boone, S. H. Chen, C. J. Phelps, S. Ball, J. A. Monahan, P. M. Jobst, K. J. McCreath, A. E. Lamborn, J. L. Cowell-Lucero, K. D. Wells, A. Colman, I. A. Polejaeva, and D. L. Ayares 2002. Targeted disruption of the alpha 1,3-galactosyltransferase gene in cloned pigs. Nat. Biotechnol. 20: 251-255.
  4. Denning, C. and H. Priddle. 2003. New frontiers in gene targeting and cloning: success, application and challenges in domestic animals and human embryonic stem cells. Reproduction 126: 1-11.
  5. Hai, T., F. Teng, R. Guo, W. Li, and Q. Zhou. 2014. One-step generation of knockout pigs by zygote injection of CRISPR/Cas system. Cell Res. 24:372-375.
  6. Kim, J. W., H. M. Kim, S. M. Lee, and M. J. Kang. 2012. Porcine knock-in fibroblasts expressing hDAF on ${\alpha}$-1,3-galactosyltransferase (GGTA1) gene locus. Asian Australas. J. Anim. Sci. 25:1473-1480.
  7. Klumiuk, N., B. Aigner, G. Brem, and E. Wolf. 2010. Genetic modification of pigs as organ donors for xenotransplantation. Mol. Reprod. Dev. 77:209-221.
  8. Kobayashi, T., T. Yamaguchi, S. Hamanaka, M. Kato-Itoh, Y. Yamazaki, M. Ibata, H. Sato, Y. S. Lee, J. Usui, A. S. Knisely, M. Hirabayashi, and H. Nakauchi. 2010. Generation of rat pancreas in mouse by interspecific blastocyst injection of pluripotent stem cells. Cell 142:787-799.
  9. Laible, G. and L. Alonso-Gonzalez. 2009. Gene targeting from laboratory to livestock: Current status and emerging concepts. Biotechnol. J. 4:1278-1292.
  10. Lai, L., D. Kolber-Simonds, K. W. Park, H. T. Cheong, J. L. Greenstein, G. S. Im, M. Samuel, A. Bonk, A. Rieke, B. N. Day, C. N. Murphy, D. B. Carter, R. J. Hawley, and R. S. Prather. 2002. Production of alpha-1,3-galactosyltransferase knockout pigs by nuclear transfer cloning. Science 295:1089-1092.
  11. Liu, Y., R. Yang, Z. He, and W. Q. Gao. 2013. Generation of functional organs from stem cells. Cell Regen. 2:1
  12. Matsunari, H., H. Nagashima, M. Watanabe, K. Umeyama, K. Nakano, M. Nagaya, T. Kobayashi, T. Yamaguchi, R. Sumazaki, L. A. Herzenberg, and H. Nakauchi. 2013. Blastocyst complementation generates exogenic pancreas in vivo in apancreatic cloned pigs. Proc. Natl. Acad. Sci. USA. 110:4557-4562.
  13. Ni, W., J. Qiao, S. Hu, X. Zhao, M. Regouski, M. Yang, I.A. Polejaeva, and C. Chen. 2014. Efficient gene knockout in goats using CRISPR/Cas9 system. PLoS One 9:e106718.
  14. Nishinakamura, R. and M. Takasato. 2005. Essential roles of Sall1 in kidney development. Kidney Int. 68:1948-1950.
  15. Sprangers, B., M. Waer, and A. D. Billiau. 2008. Xenotransplantation: Where are we in 2008? Kidney Int. 74: 14-21.
  16. Takahashi, K. and S. Yamanaka. 2006. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663-676.
  17. Takahashi, K., K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda, and S. Yamanaka. 2007. Induction of pluriotent stem cells from adult human fibroblasts by defined factors. Cell 131:861-872.
  18. Tan, W., D. F. Carlson, C. A. Lancto, J. R. Garbe, D. A. Webster, P. B. Hackett, and S. C. Fahrenkrug 2013. Efficient nonmeiotic allele introgression in livestock using custom endonucleases. Proc. Natl. Acad. Sci. USA. 110:16526-16531.
  19. Usui, J., T. Kobayashi, T. Yamaguchi, A. S. Knisely, R. Nishinakamura, and H. Nakauchi. 2012. Generation of kidney from pluripotent stem cells via blastocyst complementation. Am. J. Pathol. 180:2417-2426.
  20. Ye, Y., M. Niekrasz, S. Kosanke, R. Welsh, H. E. Jordan, J. C. Fox, W. C. Edwards, C. Maxwell, and D. K. Cooper. 1994. The pig as a potential organ donor for man. A study of potentially transferable disease from donor pig to recipient man. Transplantation 57:694-703.
  21. Whitworth, K. M., K. Lee, J. A. Benne, B. P. Beaton, L. D. Spate, S. L. Murphy, M. S. Samuel, J. Mao, C. O'Gorman, E. M. Walters, C. N. Murphy, J. Driver, A. Mileham, D. McLaren, K. D. Wells, and R. S. Prather. 2014. Use of the CRISPR/Cas9 system to produce genetically engineered pigs from in vitroderived oocytes and embryos. Biol. Reprod. 91:78.
  22. Wolf, E., W. Schernthaner, V. Zakhartchenko, K. Prelle, M. Stojkovic, and G. Brem. 2000. Transgenic technology in farm animals - progress and perspectives. Exp. Physiol. 85:615-625.
  23. Xin, J., H. Yang, N. Fan, B. Zhao, Z. Ouyang, Z. Liu, Y. Zhao, X. Li, J. Song, Y. Yang, Q. Zou, Q. Yan, Y. Zeng, and L. Lai. 2013. Highly efficient generation of GGTA1 biallelic knockout inbred mini-pigs with TALENs. PLoS One 8:e84250.
  24. Yao, J., J. Huang, T. Hai, X. Wang, G. Qin, H. Zhang, R. Wu, C. Cao, J. J. Xi, Z. Yuan, and J. Zhao. 2014. Efficient bi-allelic gene knockout and site-specific knock-in mediated by TALENs in pigs. Sci. Rep. 4 Article number: 6926.