The availability of tropical copepod Nitocra sp. for marine ecotoxicological evaluation

해양생태독성평가를 위한 열대 요각류 Nitocra sp.의 이용 가능성

  • Lee, Kyun-Woo (Marine Life & Ecosystem Division, Korea Institute of Ocean Science & Technology) ;
  • Choi, Young-Ung (Marine Life & Ecosystem Division, Korea Institute of Ocean Science & Technology)
  • Received : 2016.10.04
  • Accepted : 2016.11.10
  • Published : 2016.11.30


Indigenous species are needed for more accurate toxicity assessments in tropical regions. Thus, we determined not only the optimum culture conditions for stable maintenance of Nitocra sp. isolated from tropical regions but also the availability of copepods for marine ecotoxicological evaluation. Experiments on temperature, salinity, and diet as factors for optimum culture conditions as well as acute and chronic toxicity tests for ecotoxicological assessment were carried out. Data on optimum culture conditions were analyzed for statistically significant observations using one-way analysis of variance (ANOVA). Optimum temperature and salinity for Nitocra sp. were $29^{\circ}C$ and 24~39‰, and Nitocra sp. fed Tetraselmis suecica had relatively faster development and higher survival than other microalga. Under optimum culture conditions, toxicity tests were carried out. The $LC_{50}$ level and NOEC (no observed effect concentration) levels of copper and arsenic were calculated in the acute toxicity test. In the chronic test of Cu and As, developmental time and survival traits were usable endpoints for toxicity assessments. As a result, tropical copepod Nitocra sp. seems to be a potential candidate organism for marine ecotoxicological evaluation.


Tropical;Copepod;Nitocra sp.;Ecotoxicological evaluation;Endpoint


Supported by : 한국해양과학기술원


  1. L. Hansen, "Increasing the resistance and resilience of tropical marine ecosystems to climate change", in Buying time: a user's manual, edited by L.J. Hansen, J.L. Biringerm, and J.R. Hoffman, pp. 157-176. 2003.
  2. P. L. Howe, A. J. Reichelt-Brushett, and M. W. Clark, "Aiptasia pulchella : a tropical cnidarian representative for laboratory ecotoxicological research", Environl. Toxicol. Chem. 31, pp. 2653-2662. 2012. DOI:
  3. K. W. Lee, S. Raisuddin, D. S. Hwang, H. G. Park, and J. S. Lee, "Acute toxicities of trace metals and common xenobiotics to the marine copepod Tigriopus japonicus: Evaluation of its use as a benchmark species for routine ecotoxicity tests in Western Pacific coastal regions", Environ. Toxicol. 22, pp. 532-538. 2007. DOI:
  4. OECD, "OECD validation report of the full life-cycle test with the harpacticoid copepods Nitocra spinipes and Amphiascus tenuiremis and the clanoid copepod Acartia tonsa-Phase 1. Organization for economic cooperation and development", Brussels Belgium. (79. ENV/JM/MONO). 2007.
  5. USEPA, "Short term methods for measuring the chronic toxicity of effluents and receiving waters to marine and estuarine organisms", third ed United States Environmental Protection Agency, Office of Water, Washington, DC. (EPA-821-R-02-014). 2002.
  6. ISO, "Water quality-determination of acute lethal toxicity to marine copepods (copepoda, crustacea)", Draft International Standard ISO/DIS 14669. International Organization for Standardization, Geneve, Switzerland. 1999.
  7. ASTM, "Standard guide for conducting renewal microplate-based life-cycle toxicity tests with a marine meiobenthic copepod. E2317-04", American Society for Testing Materials International, West Conshohocken, PA, USA. 2004.
  8. R. van Dam, A. Harford, M. Houston, A. Hogan, and A. Negri, "Tropical marine toxicity testing in Australia: a review and recommendations", Australasian J. Ecotox. 14, pp. 55-88. 2008.
  9. F. Gissi, M. T. Binet, and M. S. Adams, "Acute toxicity testing with the tropical marine copepod Acartia sinjiensis: Optimization and application", Ecotoxicol. Environ. Saf. 97, pp. 86-93. 2013. DOI:
  10. A. Rose, A.-M. Carruthers, J. Stauber, R. Lim, and S. Blockwell, "Development of an acute toxicity test with the marine copepod Acartia sinjiensis", Australasian J. Ecotox. 12, pp. 73-81. 2006.
  11. K. Kwok, K. Leung, G. Lui, S. Chu, P. Lam, D. Morritt, L. Maltby, T. Brock, P. Van den Brink, M. Warne, and M. Crane, "Comparison of tropical and temperate freshwater animal species' acute sensitivities to chemicals: implications for deriving safe extrapolation factors", Integr. Environ. Assess. Manag. 3, pp. 49-67. 2007. DOI:
  12. M. Ismail, S. M. Phang, S. L. Tong, and M. T. Brown, "A modified toxicity testing method using tropical marine microalgae", Environ. Monit. Assess. 75, pp. 145-154. 2002. DOI:
  13. K. W. Lee, and Y. W. Choi, "Mass culture of the brackish water cyclopoid copepod Paracyclopina nana Smirnov", J. Korea Acad. Industr. Coop. Soc. 17, pp. 262-266. 2016. DOI:
  14. K. W. Lee and Y. U. Choi, "Population growth of a tropical tintinnid, Metacylis tropica on different temperature, salinity and diet", J. Korea Acad. Industr. Coop. Soc. 17, 322-328. 2016. DOI:
  15. K. W. Lee, J. H. Kang, and H. G. Park, "Effect of food concentration on grazing, growth and fecundity of cyclopoid copepod Paracyclopina nana", J. Korea Acad. Industr. Coop. Soc. 13, 5206-5210. 2012. DOI:
  16. K. W. Lee, S. Raisuddin, D. S. Hwang, H. G. Park, H. U. Dahms, I. Y. Ahn, and J. S. Lee, "Two-generation toxicity study on the copepod model species Tigriopus japonicus", Chemosphere 72, pp. 1359-1365. 2008. DOI:
  17. H. Matias-Peralta, F. M. Yusoff, M. Shariff, and A. Arshad, "Effects of some environmental parameters on the reproduction and development of a tropical marine harpacticoid copepod Nitocra affinis f. californica Lang", Mar. Pollut. Bull. 51, pp. 722-728. 2005. DOI:
  18. R. McAllen and E. Brennan, "The effect of environmental variation on the reproductive development time and output of the high-shore rockpool copepod Tigriopus brevicornis", J. Exp. Mar. Biol. Ecol. 368, pp. 75-80. 2009. DOI:
  19. R. McAllen and A. Taylor, "The effect of salinity change on the oxygen consumption and swimming activity of the high-shore rockpool copepod Tigriopus brevicornis", J. Exp. Mar. Biol. Ecol. 263, pp. 227-240. 2001. DOI:
  20. A. C. Bejarano, G. T. Chandler, L. J. He, and B. C. Coull, "Individual to population level effects of South Louisiana crude oil water accommodated hydrocarbon fraction (WAF) on a marine meiobenthic copepod", J. Exp. Mar. Biol. Ecol. 332, pp. 49-59. 2006. DOI:
  21. B. H. Hansen, D. Altin, K. M. Hessen, U. Dahl, M. Breitholtz, T. Nordtug, and A. J. Olsen, "Expression of ecdysteroids and cytochrome P450 enzymes during lipid turnover and reproduction in Calanus finmarchicus (Crustacea : Copepoda)", Gen. Comp. Endocrinol. 158, pp. 115-121. 2008. DOI:
  22. A. Tan and S. R. Palli, "Edysone receptor isoforms play distinct roles in controlling molting and metamorphosis in the red flour beetle, Tribolium castaneum", Mol. Cell. Endocrinol. 291, pp. 42-49. 2008. DOI:
  23. K. W. Lee, W. J. Shim, U. H. Yim, and J. H. Kang, "Acute and chronic toxicity study of the water accommodated fraction (WAF), chemically enhanced WAF (CEWAF) of crude oil and dispersant in the rock pool copepod Tigriopus japonicus", Chemosphere 92, pp. 1161-1168. 2013. DOI: