DOI QR코드

DOI QR Code

Design Optimization Method of Inertial Parameters of Serial Manipulators for Improving the Energy Efficiency

에너지 효율 향상을 위한 직렬형 머니퓰레이터의 관성 파라미터 설계 최적화 방법

  • Hwang, Soon-Woong (Department of Mechatronics Engineering, Hanyang University) ;
  • Kim, Hyeon-Guk (Department of Mechatronics Engineering, Hanyang University) ;
  • Choi, Youn-Sung (Department of Mechanical Engineering, Hanyang University) ;
  • Shin, Kyoo-Sik (Department of Robot Engineering, Hanyang Univeristy) ;
  • Han, Chang-Soo (Department of Robot Engineering, Hanyang Univeristy)
  • 황순웅 (한양대학교 메카트로닉스공학과) ;
  • 김현국 (한양대학교 메카트로닉스공학과) ;
  • 최윤성 (한양대학교 기계공학과) ;
  • 신규식 (한양대학교 로봇공학과) ;
  • 한창수 (한양대학교 로봇공학과)
  • Received : 2016.10.10
  • Accepted : 2016.11.10
  • Published : 2016.11.30

Abstract

This paper presents a design methodology for improving the energy efficiency by considering the inertial properties of serial manipulators. This method employed is to put the inertia matrix, which has a critical effect on the equation of motion, into the constraints of the optimization problem. Through the optimization process, we propose a design algorithm that can double-check whether the optimized parameters satisfy the required performance or not by using an auxiliary index associated with the inertia and energy. Using this design algorithm, we were able to improve the energy efficiency by minimizing the torque. We applied this method to a 3 degrees of freedom serial manipulator and simulated it.

Keywords

Inertia Property;Energy Efficiency;Torque Optimization;Optimal Design;Serial Manipulator

Acknowledgement

Supported by : 한국산업기술평가관리원

References

  1. T. A. Loduha and B. Ravani, "On First-Order Decoupling of Equation of Motion for Constrained Dynamical Systems," Journal of Applied Mechanics, vol. 62, no. 1, pp. 216-222, 1995. DOI: http://dx.doi.org/10.1115/1.2895905 https://doi.org/10.1115/1.2895905
  2. P. Herman, "Dynamical coupling reduction for rigid manipulators using generalized velocity components," Mechanics Research Communications, vol. 35, no. 8, pp. 553-561, 2008. DOI: http://dx.doi.org/10.1016/j.mechrescom.2008.06.005 https://doi.org/10.1016/j.mechrescom.2008.06.005
  3. S. Kucuk and Z. Bingul, "Link mass optimization of serial robot manipulators using genetic algorithm," Lecture Notes in Computer Science, vol. 4251, pp. 138-144, 2006. DOI: http://dx.doi.org/10.1007/11892960_17
  4. J. R. Singh and J. Rastegar, "Optimal Synthesis of Robot Manipulators Based on Global Kinematic Parameters," Mechanism and Machine Theory, vol. 30, no. 4, pp. 569-580, 1995. DOI: http://dx.doi.org/10.1016/0094-114X(94)00051-L https://doi.org/10.1016/0094-114X(94)00051-L
  5. B. K. Rout, R. K. Mittal, "Parametric Design Optimization of 2-DOF R-R Planar Manipulator-A design of experimental approach," Robotics and Computer-Integrated Manufacturing, vol. 24, no. 2, pp. 239-248, 2008. DOI: http://dx.doi.org/10.1016/j.rcim.2006.10.008 https://doi.org/10.1016/j.rcim.2006.10.008
  6. S. Kucuk and Z. Bingul, "Comparative study of performance indices for fundamental robot manipulators," Robotics and Autonomous Systems, vol. 54, no. 7, pp. 567-573, 2006. DOI: http://dx.doi.org/10.1016/j.robot.2006.04.002 https://doi.org/10.1016/j.robot.2006.04.002
  7. F. A. Lara-Molina, J. M. Rosario and D. Dumur, "Multi-Objective Optimization of Stewart-Gough Manipulator Using Global Indices," IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 79-85, 2011. DOI: http://dx.doi.org/10.1109/aim.2011.6026996
  8. T. Yoshikawa, "Manipulability of Robotic Mechanisms," The International Journal of Robotics Research, vol. 4, no. 2, pp. 3-9, 1985. DOI: http://dx.doi.org/10.1177/027836498500400201
  9. J. P. Merlet, "Jacobian, Manipulability, Condition Number, and Accuracy of Parallel Robots," Journal of Mechanical Design, vol. 128, no. 1, pp. 199-206, 2005. DOI: http://dx.doi.org/10.1115/1.2121740
  10. T. Yoshikawa, "Dynamic Manipulability of Robot Manipulators," IEEE International Conference on Robotics and Automation, vol 2. pp. 1033-1038, 1985. DOI: http://dx.doi.org/10.1109/robot.1985.1087277
  11. O. Ma and J. Angeles, "The concept of dynamic isotropy and its applications to inverse kinematics and trajectory planning," IEEE International Conference on Robotics and Automation, pp. 48-486, 1990. DOI: http://dx.doi.org/10.1109/ROBOT.1990.126024
  12. J. L. Pons, R. Ceres, A. R. Jimenez, L. Calderon and J. M. Martin, "Nonlinear Performance Index (npi): A Tool for Manipulator Dynamics Improvement," Journal of Intelligent and Robotic Systems, vol. 18, no. 3, pp. 277-287, 1997. DOI: http://dx.doi.org/10.1023/A:1007902913510 https://doi.org/10.1023/A:1007902913510
  13. X. J. Liu and J. Wang, "Performance atlases and optimum design of planar 5R symmetrical parallel mechanisms," Mechanism and Machine Theory, vol. 41, no. 2, pp. 119-144, 2006. DOI: http://dx.doi.org/10.1016/j.mechmachtheory.2005.05.004 https://doi.org/10.1016/j.mechmachtheory.2005.05.003
  14. B. K. Rout and R. K. Mittal, "Screening of factors influencing the performance of manipulator using combined array design of experiment approach," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 3, pp. 651-666, 2009. DOI: http://dx.doi.org/10.1016/j.rcim.2008.05.004 https://doi.org/10.1016/j.rcim.2008.05.004