DOI QR코드

DOI QR Code

Teaching learning-based optimization for design of cantilever retaining walls

  • Temur, Rasim ;
  • Bekdas, Gebrail
  • Received : 2015.08.04
  • Accepted : 2016.01.29
  • Published : 2016.02.25

Abstract

A methodology based on Teaching Learning-Based Optimization (TLBO) algorithm is proposed for optimum design of reinforced concrete retaining walls. The objective function is to minimize total material cost including concrete and steel per unit length of the retaining walls. The requirements of the American Concrete Institute (ACI 318-05-Building code requirements for structural concrete) are considered for reinforced concrete (RC) design. During the optimization process, totally twenty-nine design constraints composed from stability, flexural moment capacity, shear strength capacity and RC design requirements such as minimum and maximum reinforcement ratio, development length of reinforcement are checked. Comparing to other nature-inspired algorithm, TLBO is a simple algorithm without parameters entered by users and self-adjusting ranges without intervention of users. In numerical examples, a retaining wall taken from the documented researches is optimized and the several effects (backfill slope angle, internal friction angle of retaining soil and surcharge load) on the optimum results are also investigated in the study. As a conclusion, TLBO based methods are feasible.

Keywords

cantilever retaining wall;reinforced concrete structures;Teaching-Learning Based Optimization (TLBO);optimum design

References

  1. Ahmadi-Nedushan, B. and Varaee, H. (2009), "Optimal Design of Reinforced Concrete Retaining Walls Using a Swarm Intelligence Technique", The First International Conference on Soft Computing Technology in Civil, Structural and Environmental Engineering, UK.
  2. Alshawi, F.A.N., Mohammed, A.I. and Farid, B.J. (1988), "Optimum design of tied-back retaining walls", Struct. Eng., 66(6), 97-105.
  3. Azizipanah-Abarghooee, R., Niknam, T., Roosta, A., Malekpour, A.R. and Zare, M. (2012), "Probabilistic multiobjective wind-thermal economic emission dispatch based on point estimated method", Energy, 37(1), 322-335. https://doi.org/10.1016/j.energy.2011.11.023
  4. Bouchekara, H.R.E.H., Abido, M.A. and Boucherma, M. (2014), "Optimal power flow using teachinglearning-based optimization technique", Elect. Power Syst. Res., 114, 49-59. https://doi.org/10.1016/j.epsr.2014.03.032
  5. Camp, C.V. and Akin, A. (2011), "Design of retaining walls using big bang-big crunch optimization", J. Struct. Eng., 138(3), 438-448.
  6. Camp, C.V. and Farshchin, M. (2014), "Design of space trusses using modified teaching-learning based optimization", Eng. Struct., 62-63, 87-97. https://doi.org/10.1016/j.engstruct.2014.01.020
  7. Ceranic, B., Freyer, C. and Baines, R.W. (2001), "An application of simulated annealing to the optimum design reinforced concrete retaining structure", Comput. Struct., 79(17), 1569-1581. https://doi.org/10.1016/S0045-7949(01)00037-2
  8. Chau, K.W. and Albermani, F. (2003), "Knowledge-based system on optimum design of liquid retaining structures with genetic algorithms", J. Struct. Eng., 129(10), 1312-1321. https://doi.org/10.1061/(ASCE)0733-9445(2003)129:10(1312)
  9. Dede, T. (2013), "Optimum design of grillage structures to LRFD-AISC with teaching-learning based optimization", Struct. Multidiscip. Optim., 48(5), 955-964. https://doi.org/10.1007/s00158-013-0936-3
  10. Dede, T. and Ayvaz, Y. (2013), "Structural optimization with teaching-learning-based optimization algorithm", Struct. Eng. Mech., 47(4), 495-511. https://doi.org/10.12989/sem.2013.47.4.495
  11. Degertekin, S.O. and Hayalioglu, M.S. (2013), "Sizing truss structures using teaching-learning-based optimization", Comput. Struct., 119, 177-188. https://doi.org/10.1016/j.compstruc.2012.12.011
  12. Dembicki, E. and Chi, T. (1989), "System analysis in calculation of cantilever retaining walls", Int. J. Numer. Anal. Meth. Geomech., 13(6), 599-610. https://doi.org/10.1002/nag.1610130603
  13. Dorigo, M., Maniezzo, V. and Colorni A (1996), "The ant system: optimization by a colony of cooperating agents", IEEE Tran. Syst. Man Cyber. B, 26, 29-41. https://doi.org/10.1109/3477.484436
  14. Erol, O.K. and Eksin, I. (2006), "A new optimization method: Big bang big crunch", Adv. Eng. Softw., 37, 106-111. https://doi.org/10.1016/j.advengsoft.2005.04.005
  15. Ganguly, A. and Patel, S.K. (2014), "A teaching-learning based optimization approach for economic design of X-bar control chart", Appl. Soft Comput., 24, 643-653. https://doi.org/10.1016/j.asoc.2014.08.022
  16. Geem, Z.W., Kim, J.H. and Loganathan, G.V. (2001), "A new heuristic optimization algorithm: harmony search", Simul., 76, 60-68. https://doi.org/10.1177/003754970107600201
  17. Ghasemi, M., Ghavidel, S., Rahmani, S., Roosta, A. and Falah, H. (2014), "A novel hybrid algorithm of imperialist competitive algorithm and teaching learning algorithm for optimal power flow problem with non-smooth cost functions", Eng. Appl. Artif. Intel., 29, 54-69. https://doi.org/10.1016/j.engappai.2013.11.003
  18. Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Boston, MA.
  19. Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI.
  20. Kaveh, A. and Abadi, A.S.M. (2011), "Harmony search based algorithms for the optimum cost design of reinforced concrete cantilever retaining walls", Int. J. Civil Eng., 9(1), 1-8.
  21. Kaveh, A., Kalateh-Ahani, M. and Fahimi-Farzam, M. (2013), "Constructability optimal design of reinforced concrete retaining walls using a multi-objective genetic algorithm", Struct. Eng. Mech., 47(2), 227-245. https://doi.org/10.12989/sem.2013.47.2.227
  22. Kennedy, J. and Eberhart, R.C. (1995), "Particle swarm optimization", Proceedings of IEEE International Conference on Neural Networks No. IV, Perth, November-December.
  23. Keskar, A.V. and Adidam, S.R. (1989), "Minimum cost design of a cantilever retaining wall", Indian Concrete J., 63(8), 401-405.
  24. Li, J.Q., Pan, Q.K. and Mao, K. (2015), "A discrete teaching-learning-based optimisation algorithm for realistic flowshop rescheduling problems", Eng. Appl. Artif. Intel., 37, 279-292. https://doi.org/10.1016/j.engappai.2014.09.015
  25. Lin, W., Yu, D.Y., Wang, S., Zhang, C., Zhang, S., Tian, H. and Liu, S. (2015), "Multi-objective teaching-learning-based optimization algorithm for reducing carbon emissions and operation time in turning operations", Eng. Optim., 47(7), 994-1007. https://doi.org/10.1080/0305215X.2014.928818
  26. Niknam, T., Golestaneh, F. and Sadeghi, M.S. (2012a), "$\Theta$-Multiobjective teaching-learning-based optimization for dynamic economic emission dispatch", Syst. J., IEEE, 6(2), 341-352. https://doi.org/10.1109/JSYST.2012.2183276
  27. Niknam, T., Zare, M. and Aghaei, J. (2012b), "Scenario-based multiobjective volt/var control in distribution networks including renewable energy sources", Power Deliv., IEEE Tran., 27(4), 2004-2019. https://doi.org/10.1109/TPWRD.2012.2209900
  28. Niknam, T., Massrur, H.R. and Firouzi, B.B. (2012c), "Stochastic generation scheduling considering wind power generators", J. Renew. Sustain. Energy, 4(6), 063119. https://doi.org/10.1063/1.4767930
  29. Pochtman, Y.M., Zhmuro, O.V. and Landa, M.S. (1988), "Design of an optimal retaining wall with anchorage", Soil Mech. Found. Eng., 25(5), 508-510. https://doi.org/10.1007/BF01786646
  30. Rao, R.V., Savsani, V.J. and Vakharia, D.P. (2011), "Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems", Comput. Aid. Des., 43(3), 303-315. https://doi.org/10.1016/j.cad.2010.12.015
  31. Rao, R.V. and Patel, V. (2013), "Multi-objective optimization of two stage thermoelectric cooler using a modified teaching-learning-based optimization algorithm", Eng. Appl. Artif. Intel., 26(1), 430-445. https://doi.org/10.1016/j.engappai.2012.02.016
  32. Rao, R.V. and Waghmare, G. (2015), "Design optimization of robot grippers using teaching-learning-based optimization algorithm", Adv. Robot., 29(6), 431-447. https://doi.org/10.1080/01691864.2014.986524
  33. Rao, R.V. and More, K.C. (2015), "Optimal design of the heat pipe using TLBO (teaching-learning-based optimization) algorithm", Energy, 80, 535-544. https://doi.org/10.1016/j.energy.2014.12.008
  34. Rhomberg, E.J. and Street, W.M. (1981), "Optimal design of retaining walls", J. Struct. Div., 107(5), 992-1002.
  35. Saribas, A. and Erbatur, F. (1996), "Optimization and sensitivity of retaining structures", J. Geotech. Eng., 122(8), 649-656. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:8(649)
  36. Sheikholeslami, R., Khalili, B.G. and Zahrai, S.M. (2014), "Optimum cost design of reinforced concrete retaining walls using hybrid firefly algorithm", Int. J. Eng. Tech., 6(6), 465-470. https://doi.org/10.7763/IJET.2014.V6.742
  37. Sivakumar Babu, G.L. and Basha, B.M. (2008), "Optimum design of cantilever retaining walls using target reliability approach", Int. J. Geomech., 8(4), 240-252. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:4(240)
  38. Talatahari, S. and Sheikholeslami, R. (2014), "Optimum design of gravity and reinforced retaining walls using enhanced charged system search algorithm", KSCE J. Civil Eng., 18(5), 1464-1469. https://doi.org/10.1007/s12205-014-0406-5
  39. Togan, V. (2012), "Design of planar steel frames using teaching-learning based optimization", Eng. Struct., 34, 225-232. https://doi.org/10.1016/j.engstruct.2011.08.035
  40. Togan, V. (2013), "Design of pin jointed structures using teaching-learning based optimization", Struct. Eng. Mech., 47(2), 209-225. https://doi.org/10.12989/sem.2013.47.2.209
  41. Yang, X.S. (2009), Firefly algorithms for multimodal optimization, Stochastic algorithms: foundations and applications, Springer, Berlin Heidelberg.
  42. Yang, X.S. (2010), A New Metaheuristic Bat-Inspired Algorithm, in: Nature Inspired Cooperative Strategies for Optimization (NISCO 2010), Studies in Computational Intelligence, Springer, Berlin.
  43. Yepes, V., Alcala, J., Perea, C. and Gonzalez-Vidosa, F. (2008), "A parametric study of optimum earthretaining walls by simulated annealing", Eng. Struct., 30, 821-830. https://doi.org/10.1016/j.engstruct.2007.05.023
  44. Yildiz, A.R. (2013), "Optimization of multi-pass turning operations using hybrid teaching learning-based approach", Int. J. Adv. Manuf. Tech., 66(9-12), 1319-1326. https://doi.org/10.1007/s00170-012-4410-y
  45. Zou, F., Wang, L., Hei, X., Chen, D. and Wang, B. (2013), "Multi-objective optimization using teachinglearning-based optimization algorithm", Eng. Appl. Artif. Intel., 26(4), 1291-1300. https://doi.org/10.1016/j.engappai.2012.11.006

Cited by

  1. Optimal design of Reinforced Concrete Cantilever Retaining Walls considering the requirement of slope stability vol.21, pp.7, 2017, https://doi.org/10.1007/s12205-017-1627-1
  2. Metaheuristic Optimization of Reinforced Concrete Footings pp.1976-3808, 2018, https://doi.org/10.1007/s12205-018-2010-6

Acknowledgement

Supported by : Istanbul University