Influence of Functionalization of Silica with Ionic Liquid on Ethylene Polymerization Behavior of Supported Metallocene

실리카의 이온성 액체 기능화가 메탈로센 담지촉매의 에틸렌 중합 거동에 미치는 영향

  • Lee, Jeong Suk (Department of Chemical Engineering, Kongju National University) ;
  • Lee, Chang Il (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2015.12.25
  • Accepted : 2015.12.29
  • Published : 2016.02.10


Three amorphous silicas and SBA-15 were employed as supports, which were capable of confining ionic liquid (IL) and metallocene in the nanopore. Ionic liquid functionalized silica was prepared by the interaction between the chloride anions of 1,3-bis(cyanomethyl)imidazolium chloride and the surface OH groups. Metallocene and methylaluminoxane (MAO) were subsequently immobilized on the ionic liquid functionalized silica for ethylene polymerization. The metallocene supported on ionic liquid functionalized XPO-2412 and XPO-2410 having a larger pore diameter compared to SBA-15 showed higher activity than that of using supported catalyst without ionic liquid functionalization. However, the activity of metallocene supported on SBA-15 decreased after ionic liquid functionalization, suggesting that the diffusion of ethylene monomer and cocatalyst to the active site of nanopore was restricted during ethylene polymerization. This could be resulted from significant reduction of the pore diameter due to the immobilization of ionic liquid and $(n-BuCp)_2ZrCl_2$ and MAO. The effect on polymerization activity in accordance with the concentration of hydroxyl groups on the surface was also investigated. The polymerization activity increased as the concentration of hydroxyl groups on amorphous silica increased. The polymerization activities of metallocene supported on silica showed the similar trend after ionic liquid functionalization.


Supported by : 한국연구재단


  1. J. P. J. Turunen, T. Venalainen, S. Suvanto, and T. T. Pakkanen, Novel Use of Mesoporous Aluminas as Supports for $Cp_2ZrCl_2$ and Cp*ZrMe3: Ethylene Polymerization and Formation of Polyethylene Nanofibers, J. Polym. Sci. A: Polym. Chem., 45, 4002-4012 (2007).
  2. A. S. Shearer, Y. R. Miguel, E. A. Minich, D. Pochan, and C. Jenny, Polymer-Supported Metallocene Catalysts for Ethylene Polymerisation: Characterisation and Catalytic Studies, Inorg. Chem. Commun., 10, 262-264 (2007).
  3. M. R. Ribeiro, A. Deffieux, and M. F. Portela, Supported Metallocene Complexes for Ethylene and Propylene Polymerizations: Preparation and Activity, Ind. Eng. Chem. Res., 36, 1224-1237 (1997).
  4. J. C. Hicks, B. A. Mullis, and C. W. Jones, Sulfonic Acid Functionalized SBA-15 Silica as a Methylaluminoxane-Free Cocatalyst/Support for Ethylene Polymerization, J. Am. Chem. Soc., 129, 8426-8427 (2007).
  5. R. Huang, R. Duchateau, C. E. Koning, and J. C. Chadwick, Zirconocene Immobilization and Activation on $MgCl_2$-Based Supports: Factors Affecting Ethylene Polymerization Activity, Macromolecules, 41, 579-590 (2008).
  6. J. H. Z. Santos, P. P. Greco, F. C. Stedile, and J. Dupont, Organosilicon-Modified Silicas as Support for Zirconocene Catalyst, J. Mol. Catal. A: Chem., 154, 103-113 (2000).
  7. G. Fink, B. Steinmetz, J. Zechlin, C. Przybyla, and B. Tesche, Propene Polymerization with Silica-Supported Metallocene/MAO Catalysts, Chem, Rev., 100, 1377-1390 (2000).
  8. J. S. Lee, J.-H. Yim, J.-K. Jeon, and Y. S. Ko, Polymerization of olefins with single-site catalyst anchored on amine-functionalized surface of SBA-15, Catal. Today, 185, 175-182 (2012).
  9. J. S. Lee and Y. S. Ko, Immobilization Metallocene Inside Surface-functionalized Nanopore of Micelle-Templated Silica and its Ethylene Polymerization, Polymer(Korea), 36, 111-116 (2012).
  10. J. S. Lee and Y. S. Ko, Control of the molecular structure of ethylene- 1-hexene copolymer by surface functionalization of SBA-15 with different compositions of amine groups, J. Mol. Catal AChem., 386, 120-125 (2014).
  11. Y. Liua, L. Guoa, L. Zhua, X. Suna, and J. Chena, Removal of Cr(III, VI) by Quaternary Ammonium and Quaternary Phosphoniumionic Liquids Functionalized Silica Materials, Chem. Eng. J., 158, 108-114 (2010).
  12. H.-L. Shim, S. Udayakumar, J.-I. Yu, I. Kim, and D.-W. Park, Synthesis of Cyclic Carbonate from Allyl Glycidyl Ether and Carbon Dioxide using Ionic Liquid-Functionalized Amorphous Silica, Catal. Today, 148, 350-354 (2009).
  13. Q. Zhang, S. Zhang, and Y. Deng, Recent Advances in Ionic Liquid Catalysis, Green Chem., 13, 2619-2637 (2011).
  14. J.-H. Yim, J. S. Lee, and Y. S. Ko, Metallocene Catalysts Supported on Aminosilane and Ionic Liquids Functionalized Silica and its Ethylene Polymerization, Polymer(Korea), 39, 169-173 (2014).
  15. D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, and G. D. Stucky, Nonionic Triblock and Star Diblock Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable, Mesoporous Silica Structures, J. Am. Chem. Soc., 120, 6024-6036 (1998).
  16. M. H. Valkenberg, C. deCastro, and W. F. Holderich, Immobilisation of Ionic Liquids on Solid Supports, Green Chem., 4, 88-93 (2002).
  17. A. Karout and A. C. Pierre, Silica Gelation Catalysis by Ionic Liquids, Catal. Commun., 10, 359-361 (2009).
  18. A. Carrero, R. V. Grieken, I. Suarez, and B. Paredes, Ethylene Polymerization over $(nBuCp)_2ZrCl_2/MAO$ Catalytic System Supported on Aluminosilicate SBA-15 Mesostructured Materials, Polym. Eng. Sci., 48, 606-616 (2008).
  19. P. Kumkaew, S. E. Wanke, P. Praserthdam, C. Danumah, and S. J. Kaliaguine, Gas-Phase Ethylene Polymerization Using Zirconocene Supported on Mesoporous Molecular Sieves, J. Appl. Poym. Sci., 87, 1161-1177 (2003).
  20. M. Atiqullah, M. N. Akhtar, A. A. Moman, A. H. Abu-Raqabah, S. J. Palackal, H. A. Al-Muallem, and O. M. Hamed, Influence of Silica Calcination Temperature on the Performance of Supported Catalyst $SiO_2-^nBuSnCl_3/MAO/(^nBuCp)_2ZrCl_2$ Polymerizing Ethylene without Separately Feeding the MAO Cocatalyst, Appl. Catal. A-Gen., 320, 134-143 (2007).