DOI QR코드

DOI QR Code

Synthesis of CO2 Adsorbent with Various Aminosilanes and its CO2 Adsorption Behavior

다양한 아미노실란을 이용한 이산화탄소 흡착제 합성 및 흡착 특성

  • Jeon, Jae Wan (Department of Chemical Engineering, Kongju National University) ;
  • Ko, Young Soo (Department of Chemical Engineering, Kongju National University)
  • Received : 2015.12.24
  • Accepted : 2015.12.30
  • Published : 2016.02.10

Abstract

The carbon dioxide adsorption behavior of silica with a large specific surface area and pore volume functionalized with aminosilane compounds via in-situ polymerization and functionalization method were investigated. The organosilanes include amino functional group capable of adsorbing carbon dioxide. Elemental analyzer, in situ FT-IR and thermogravimetric analyzer were used to characterize the sorbents and to determine their $CO_2$ adsorption behavior. Comparison of different aminosilane loading in the support revealed that polyaminosilane functionalization of 70% of the pore volume in the support was better in terms of the adsorption capacity and amine efficiency than that of 100% of the pore volume of the support. Furthermore, the sorbents showed a higher adsorption capacity at an adsorption temperature of $75^{\circ}C$ than at $30^{\circ}C$ due to the thermal expansion of synthesized polyaminosilanes inside the pore of silica. The N-[3-(trimethoxysilyl)propyl]ethylenediamine (2NS) sorbent with 70% of the pore volume functionalized showed the highest adsorption capacity of 9.2 wt% at $75^{\circ}C$.

Acknowledgement

Supported by : 한국연구재단

References

  1. C. K. Yi, Advances of post-combustion carbon capture technology by dry sorbent, Korean. Chem. Eng. Res., 48, 140-146 (2010).
  2. B. M. Min, Status of $CO_2$ capturing technologies in post combustion, KIC News, 12, 15-29 (2009).
  3. C. K. Yi, Advances of carbon capture technology, KIC News, 12, 30-42 (2009).
  4. D. J. Fauth, M. L. Gray, H. W. Pennline, H. M. Krutka, S. Sjostrom, and A. M. Ault, Investigation of porous silica supported mixed-amine sorbents for post-combustion $CO_2$ capture, Energy Fuels, 26, 2483-2496 (2012). https://doi.org/10.1021/ef201578a
  5. G. Oi, L, Fu, B. H. Choi, and E. P. Giannelis, Efficient $CO_2$ sorbents based on silica foam with ultra-large mesopores, Energy Environ. Sci., 5, 7368-7375 (2012). https://doi.org/10.1039/c2ee21394j
  6. J. Figueroa, T. Fout, S. Plasynski, H. Mcllvried, and R. D. Srivastava, Advances in $CO_2$ capture technology-The U.S. departments of energy's carbon sequestration program, Int. J. Greenhouse Gas Con., 2, 9-20 (2008). https://doi.org/10.1016/S1750-5836(07)00094-1
  7. M. Broda, V. Manovic, E. J. Anthony, and C. R. Muller, Effect of pelletization and addition of steam on the cyclic performance of carbon-templated, CaO-based $CO_2$ sorbent, Environ. Sci. Technol., 48, 5322-5328 (2014). https://doi.org/10.1021/es405668f
  8. R. R. Kondakindi, G. McCumber, S. Aleksic, W. Whittenberger, and M. A. Abraham, $Na_2CO_3$-based sorbents coated on metal foil: $CO_2$ capture performance, Int. J. Greenhouse Gas Con., 15, 65-69 (2013). https://doi.org/10.1016/j.ijggc.2013.01.038
  9. N. N. Meis, A. M. Frey, J. H. Bitter, and K. P. de Jong, Carbon nanofiber-supported $K_2CO_3$ as an efficient low-temperature regenerable $CO_2$ sorbent for post-combustion capture, Ind. Eng. Chem. Res., 52, 12812-12818 (2013). https://doi.org/10.1021/ie4017072
  10. R. Quinn, R. J. Kitzhoffer, J. R. Hufton, and T. C. Golden, A high temperature lithium orthosilicate-based solid absorbent for post combustion $CO_2$ capture, Ind. Eng. Chem. Res., 51, 9320-9327 (2012). https://doi.org/10.1021/ie300157m
  11. E. O. Fernandez, M. Ronning, T. Grande, and D. Chen, Synthesis and $CO_2$ capture properties of nanocrystalline lithium zirconate, Chem. Mater., 18, 6037-6046 (2006). https://doi.org/10.1021/cm061515d
  12. B. K. Na, K. K. Koo, H. M. Eun, H. Lee, and H. K. Song, $CO_2$ recovery from flue gas by PSA process using activated carbon, Korean J. Chem. Eng., 18(2), 220-227 (2001). https://doi.org/10.1007/BF02698463
  13. M. Saleh, J. N. Tiwari, K. C. Kemp, M. Yousuf, and K. S. Kim, Highly selective and stable carbon dioxide uptake in polyindole- derived microporous carbon materials, Environ. Sci. Technol., 47, 5467-5473 (2013). https://doi.org/10.1021/es3052922
  14. N. N. Linneen, R. Pfeffer, and Y. S. Lin, $CO_2$ adsorption performance for amine grafted particulate silica aerogels, Chem. Eng. J., 254, 190-197 (2014). https://doi.org/10.1016/j.cej.2014.05.087
  15. P. L. Aranguren, J. Fraile, L. F. Vega, and C. Domingo, Regenerable solid $CO_2$ sorbents prepared by supercritical grafting of aminoalkoxysilane into low-cost mesoporous silica, J. of Supercritical Fluids, 85, 68-80 (2014). https://doi.org/10.1016/j.supflu.2013.10.020
  16. A. V. Krasnoslobodtsev and S. N. Smirnov, Effect of water on silanization of silica by trimethoxysilanes, Langmuir, 18, 3181-3184 (2002). https://doi.org/10.1021/la015628h
  17. F. Q. Liu, L. Wang, Z. G. Huang, C. Q. Li, W. Li, R. X. Li, and W. H. Li, Amine-tethered adsorbents based on three-dimensional macroporous silica for $CO_2$ capture from simulated flue gas and air, Appl. Mater. Interfaces, 6, 4371-4381 (2014). https://doi.org/10.1021/am500089g
  18. W. Zeng and H. Bai, Swelling-agent-free synthesis of rice husk derived silica materials with large mesopores for efficient $CO_2$ capture, Chem. Eng. J., 251, 1-9 (2014). https://doi.org/10.1016/j.cej.2014.04.041
  19. R. Sanz, G. Galleja, A. Arencibia, and E. S. Sanz-Perez, $CO_2$ uptake and adsorption kinetics of pore-expanded SBA-15 double- functionalized with amino group, Energy Fuels, 27, 7637-7644 (2013). https://doi.org/10.1021/ef4015229
  20. R. Sanz, G. Galleja, A. Arencibia, and E. S. Sanz-perez, Development of high efficiency adsorbents for $CO_2$ capture based on a double-functionalization method of grafting and impregnation, J. Mater. Chem. A, 1, 1956-1962 (2013). https://doi.org/10.1039/c2ta01343f
  21. J. H. Park, J. M. Celedonio, H. M. Seo, Y. K. Park, and Y. S. Ko, A study on the effect of the amine structure in $CO_2$ dry sorbents on $CO_2$ capture, Catal. Today, http://dx.doi.org/10.1016/ j.cattod.2015.10.015 (2015). https://doi.org/10.1016/j.cattod.2015.10.015
  22. R. Mueller, H. K. Kammler, K. Wegner, and S. E. Pratsinis, OH surface density of $SiO_2$ and $TiO_2$ by thermogravimetric analysis, Langmuir, 19, 160-165 (2003). https://doi.org/10.1021/la025785w
  23. S. Ek, A. Root, M. Peussa, and L. Niinisto, Determination of the hydroxyl group content in silica by thermogravimetry and a comparison with $^1H$ MAS NMR results, Thermochimica Acta, 379, 201-212 (2001). https://doi.org/10.1016/S0040-6031(01)00618-9
  24. W. C. Wilfong and S. S. C. Chuang, Probing the adsorption/desorption of $CO_2$ on amine sorbents transient infrared studies of adsorbed $CO_2$ and $C_6H_6$, Ind. Eng. Chem. Res., 53, 4224-4231 (2014). https://doi.org/10.1021/ie404403q
  25. J. Coates, Interpretation of Infrared Spectra, A Practical Approach, 7-12, J Wiley & S. L. Chichester, Newtown, USA (2000).
  26. U. Tumuluri, M. Isenberg, C. S. Tan, and S. S. C. Chuang, In situ infrared study of the effect of amine density on the nature of adsorbed $CO_2$ on amine-functionalized solid sorbents, Langmuir, 30, 7405-7413 (2014). https://doi.org/10.1021/la501284y