Scale Formation by Electrode Reactions in Capacitive Deionization and its Effects on Desalination Performance

축전식 탈염에서 전극반응에 의한 스케일 생성과 탈염성능에 미치는 영향

  • Choi, Jae-Hwan (Dept. of Chemical Engineering, Kongju National University) ;
  • Kang, Hyun-Soo (Dept. of Chemical Engineering, Kongju National University)
  • Received : 2015.12.24
  • Accepted : 2016.01.07
  • Published : 2016.02.10


The effects of scale formation of hardness material caused by electrode reactions on the desalination performance of the membrane capacitive deionization (MCDI) were investigated. During the repeated adsorption and desorption process for the influent containing $Ca^{2+}$ ion, changes in effluent concentration and cell potential with respect to the number of adsorption were analyzed. It was found that $OH^-$ generation at the cathode was initiated at about 0.8 V or more of cell potential. In addition, the scale of $Ca(OH)_2$ was formed on the surface of cathode carbon electrode by combining adsorbed $Ca^{2+}$ ions and $OH^-$ ions generated from electrode reaction. As the scale was forming, the electrical resistance of carbon electrode was increasing, which resulted in the decrease of the adsorption amount. In the case of the operation at 1.5 V cell potential, the adsorption was reduced to 58% of the initial adsorption amount due to the scale formation.


Grant : 다가 양이온 선택성 탄소전극을 이용한 경도 및 중금속 이온 제거 기술 개발


  1. S. Porada, R. Zhao, A. van der Wal, V. Presser, and P. M. Biesheuvel, Review on the science and technology of water desalination by capacitive deionization, Prog. Mater. Sci., 58, 1388-1442 (2013).
  2. Y. Oren, Capacitive deionization (CDI) for desalination and water treatment-past, present and future, Desalination, 228, 10-29 (2008).
  3. M. A. Anderson, A. L. Cudero, and J. Palma, Capacitive deionization as an electrochemical means of saving energy and delivering clean water. Comparison to present desalination practices: Will it compete?, Electrochim. Acta, 55, 3845-3856 (2010).
  4. T. J. Welgemoed and C. F. Schutte, Capacitive deionization technology: an alternative desalination solution, Desalination, 183, 327-340 (2005).
  5. Y. J. Kim and J. H. Choi, Enhanced desalination efficiency in capacitive deionization with an ion-selective membrane, Sep. Purif. Technol., 71, 70-75 (2010).
  6. L. Zou, L. Li, H. Song, and G. Morris, Using mesoporous carbon electrodes for brackish water desalination, Water Res., 42, 2340-2348 (2008).
  7. S. J. Seo, H. Jeon, J. K. Lee, G. Y. Kim, D. Park, H. Nojima, J. Lee, and S. H. Moon, Investigation on removal of hardness ions by capacitive deionization (CDI) for water softening applications, Water Res., 44, 2267-2275 (2010).
  8. P. M. Biesheuvel and A. van der Wal, Membrane capacitive deionization, J. Membr. Sci., 346, 256-262 (2010).
  9. G. W. Murphy and D. D. Caudle, Mathematical theory of electrochemical demineralization in flowing systems, Electrochim. Acta, 12, 1655-1664 (1967).
  10. M. Andelman, Charge barrier flow-through capacitor, CA Patent 2,444,390 (2002).
  11. J. B. Lee, K. K. Park, H. M. Eum, and C. W. Lee, Desalination of a thermal power plant wastewater by membrane capacitive deionization, Desalination, 196, 125-134 (2006).
  12. C. Tsouris, R. Mayes, J. Kiggans, K. Sharma, S. Yiacoumi, D. DePaoli, and S. Dai, Mesoporous carbon for capacitive deionization of saline water, Environ. Sci. Technol., 45, 10243-10249 (2011).
  13. H. Li, Y. Gao, L. Pan, Y. Zhang, Y. Chen, and Z. Sun, Electrosorptive desalination by carbon nanotubes and nanofibres electrodes and ion-exchange membranes, Water Res., 42, 4923-4928 (2008).
  14. C. J. Gabelich, T. D. Tran, and I. H. Suffet, Electrosorption of inorganic salts from aqueous solution using carbon aerogels, Environ. Sci. Technol., 36, 3010-3019 (2002).
  15. H. Li, L. Zou, L. Pan, and Z. Sun, Using graphene nano-flakes as electrodes to remove ferric ions by capacitive deionization, Sep. Purif. Techol., 75, 8-14 (2010).
  16. S. H. Chung, J. K. Lee, J. D. Ocon, Y. I. Son, and J. Y. Lee, Carbon electrodes in capacitive deionization process, Appl. Chem. Eng., 25, 346-351 (2014).
  17. J. H. Choi, Determination of the electrode potential causing Faradaic reactions in membrane capacitive deionization, Desalination, 347, 224-229 (2014).
  18. Y. J. Kim and J. H. Choi, Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer, Water Res., 44, 990-996 (2010).
  19. Y. J. Kim and J. H. Choi, Desalination of brackish water by capacitive deionization system combined with ion-exchange membrane, Appl. Chem. Eng., 21, 87-92 (2010).
  20. R. Zhao, P. M. Biesheuvel, and A. van der Wal, Energy consumption and constant current operation in membrane capacitive deionization, Energy Environ. Sci., 5, 9520-9527 (2012).
  21. D. C. Harris, Quantitative Chemical Analysis, 5th ed., W.H. Freemann and Company, NY, USA (1998).
  22. B. E. Conway, Electrochemical Supercapacitor: Scientific Fundamentals and Technological Applications, Kluwer Academic/ Plenum Publishers, NY, USA (1999).
  23. H. Strathmann, Ion-Exchange Membrane Separation Processes, Elsevier, Amsterdam, The Netherland (2004).