DOI QR코드

DOI QR Code

Study on the Oxidative Polymerization of EDOT Induced by Graphene Oxide

산화 그래핀에 의한 EDOT의 산화중합에 관한 연구

  • Kim, Min Chae (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Park, Min Ui (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Park, No Il (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Lee, Seul Bi (EverChemTech Co., Ltd.) ;
  • Lee, Seong Min (EverChemTech Co., Ltd.) ;
  • Yang, So Yeon (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Choi, Jong Hyuk (Department of Polymer Engineering, College of Engineering, Suwon University) ;
  • Chung, Dae-won (Department of Polymer Engineering, College of Engineering, Suwon University)
  • 김민채 (수원대학교 공과대학 신소재공학과) ;
  • 박민의 (수원대학교 공과대학 신소재공학과) ;
  • 박노일 (수원대학교 공과대학 신소재공학과) ;
  • 이슬비 ((주)에버켐텍) ;
  • 이성민 ((주)에버켐텍) ;
  • 양소연 (수원대학교 공과대학 신소재공학과) ;
  • 최종혁 (수원대학교 공과대학 신소재공학과) ;
  • 정대원 (수원대학교 공과대학 신소재공학과)
  • Received : 2015.11.09
  • Accepted : 2015.11.18
  • Published : 2016.02.10

Abstract

In the presence of poly(4-styrene sulfonate) (PSS) and excess amount of graphene oxide (GO), we conducted in-situ polymerization of 3,4-ethylenedioxythiophene (EDOT) without an oxidant. XPS and IR spectroscopies of the product (GO-P) showed that PEDOT/PSS was successfully synthesized by oxidative polymerization of EDOT and hybridized with GO. GO-P displayed a stable aqueous suspension, however, the high content (42%) of GO in GO-P diminished electrical conductivity down to $15S{\cdot}m^{-1}$. Annealing of GO-P films at $200^{\circ}C$ for 8 hr induced partial reduction of GO and finally enhanced electrical conductivity up to $212S{\cdot}m^{-1}$.

Acknowledgement

Supported by : 한국산업기술평가관리원(KEIT)

References

  1. A. K. Geim and K. S. Novoselov, The rise of graphene, Nat. Mater., 6, 183-191 (2007). https://doi.org/10.1038/nmat1849
  2. Y. W. Zhu, S. T. Murali, W. W. Cai, X. S. Li, J. W. Suk, J. R. Potts, and R. S. Ruoff, Graphene and Graphene Oxide: Synthesis, Properties, and Applications, Adv. Mater., 22, 3906-3924 (2010). https://doi.org/10.1002/adma.201001068
  3. J. R. Potts, D. R. Dreyer, C. W. Bielawski, and R. S. Ruoff, Graphene-based polymer nanocomposites, Polymer, 52, 5-25 (2011). https://doi.org/10.1016/j.polymer.2010.11.042
  4. V. Singh, D. H. Joung, L. Zhai, S. Das, S. I. Khondaker, and S. Seal, Graphene based materials: Past, present and future, Prog. Mater. Sci., 56, 1178-1271 (2011). https://doi.org/10.1016/j.pmatsci.2011.03.003
  5. D. R. Dreyer, S. J. Park, C. W. Bielawski, and R. S. Ruoff, The chemistry of graphene oxide, Chem. Soc. Rev., 39, 228-240 (2010). https://doi.org/10.1039/B917103G
  6. C. L. Su and K. P. Loh, Carbocatalysts: Graphene Oxide and Its Derivatives, Acc. Chem. Res., 46, 2275-2285 (2013). https://doi.org/10.1021/ar300118v
  7. D. R. Dreyer, H. P. Jia, and C. W. Bielawski, Graphene Oxide: A Convenient Carbocatalyst for Facilitating Oxidation and Hydration Reactions, Angew. Chem., 122, 6965-6968 (2010). https://doi.org/10.1002/ange.201002160
  8. D. R. Dreyer, S. Murali, Y. W. Zhu, R. S. Ruoff, and C. W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem., 21, 3443-3447 (2011). https://doi.org/10.1039/C0JM02704A
  9. D. R. Dreyer, H. P. Jia, A. D. Todd, J. X. Geng, and C. W. Bielawski, Graphite oxide: a selective and highly efficient oxidant of thiols and sulfides, Org. Biomol. Chem., 9, 7292-7295 (2011). https://doi.org/10.1039/c1ob06102j
  10. K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, 27, 2014-2018 (2011). https://doi.org/10.1021/la104420p
  11. S. Stankovich, R. D. Piner, X. Q. Chen, N. Q. Wu, S. T. Nquyen, and R. S. Ruoff, Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate), J. Mater. Chem., 16, 155-158 (2006). https://doi.org/10.1039/B512799H
  12. S. Wang, C. T. Nai, X. F. Jiang, Y. H. Pan, C. H Tan, M. Nesladek, Q. H. Xu, and K. P. Loh, Graphene Oxide Polythiophene Hybrid with Broad-Band Absorption and Photocatalytic Properties, J. Phys. Chem. Lett., 3, 2332-2336 (2012). https://doi.org/10.1021/jz300930u
  13. D. Sun, L. Jin, Y. Chen, J. R. Zhang, and J. J. Zhu, Microwave-Assisted In Situ Synthesis of Graphene/PEDOT Hybrid and Its Application in Supercapacitors, Chem. Plus Chem., 78, 227-234 (2013).
  14. H. Zhou, W. Yao, G. Li, J. Wang, and Y. Lu, Graphene/poly(3,4-ethylenedioxythiophene) hydrogel with excellent mechanical performance and high conductivity, Carbon, 59, 495-502 (2013). https://doi.org/10.1016/j.carbon.2013.03.045
  15. S. Kirchmeyer and K. Reuter, Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene), J. Mater. Chem., 15, 2077-2088 (2005). https://doi.org/10.1039/b417803n
  16. F. Louwet, L. Groenendaal, J. Dhaen, J. Manca, J. V. Luppen, E. Verdonck, and L. Leenders, PEDOT/PSS: synthesis, characterization, properties and applications, Synth. Met., 135-136, 115-117 (2003). https://doi.org/10.1016/S0379-6779(02)00518-0
  17. H. S. Yoo and Y. S. Park, Synthesis and Photovoltaic Properties of Conducting Polymers Based on Phenothiazine, Appl. Chem. Eng., 24, 93-98 (2013).
  18. N. I. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Preparation and Characterization of PEDOT/PSS Hybrid with Graphene Derivative Wrapped by Water-soluble Polymer, Appl. Chem. Eng., 25, 581-585 (2014). https://doi.org/10.14478/ace.2014.1087
  19. J. W. Choi, S. B. Lee, S. M. Lee, W. S. Park, and D. W. Chung, Effect of Amine Compounds on Electrical Properties of Graphene Oxide Films made by bar Coating, Appl. Chem. Eng., 26, 331-335 (2015). https://doi.org/10.14478/ace.2015.1032
  20. S. B. Lee, S. M. Lee, N. I. Park, S. H. Lee, and D. W. Chung, Preparation and characterization of conducting polymer nanocomposite with partially reduced graphene oxide, Synt. Met., 201, 61-66 (2015). https://doi.org/10.1016/j.synthmet.2015.01.021
  21. B. Yin, Q. Liu, L. Y. Yang, X. M. Wu, Z. F. Liu, Y. L. Hua, S. G. Yin, and Y. S. Chen, Buffer Layer of PEDOT:PSS/Graphene Composite for Polymer Solar Cells, J. Nanosci. Nanotechnol., 10, 1934-1938 (2010). https://doi.org/10.1166/jnn.2010.2107
  22. K. Y. Jo, T. M. Lee, H. J. Choi, J. H. Park, D. J. Lee, D. W. Lee, and B. S. Kim, Stable Aqueous Dispersion of Reduced Graphene Nanosheets via Non-Covalent Functionalization with Conducting Polymers and Application in Transparent Electrodes, Langmuir, 27, 2014-2018 (2011). https://doi.org/10.1021/la104420p
  23. S. Liu, J. Q. Tian, L. Wang, Y. L. Luo, and X. Q. Sun, Production of stable aqueous dispersion of poly(3,4-ethylenedioxythiophene) nanorods using graphene oxide as a stabilizing agent and their application for nitrite detection, Analyst, 136, 4898-4902 (2011). https://doi.org/10.1039/c1an15799j
  24. P. Amaladass, J. A. Clement, and A. K. Mohanakrishnan, Pd-mediated C-H arylation of EDOT and synthesis of push-pull systems incorporating EDOT, Tetrahedron, 63, 10363-10371 (2007). https://doi.org/10.1016/j.tet.2007.07.037
  25. N. I. Park, W. S. Park, S. B. Lee, S. M. Lee, and D. W. Chung, Comparative Studies on Three Kinds of Reductants Applicable for the Reduction of Graphene Oxide, Appl. Chem. Eng., 26, 99-103 (2015). https://doi.org/10.14478/ace.2014.1127
  26. B. Friedel, P. E. Keivanidis, T. J. K. Brenner, A. Abrusci, C. R. McNeill, R. H. Friend, and N. C. Greenham, Effects of Layer Thickness and Annealing of PEDOT:PSS Layers in Organic Photodetectors, Macromolecules, 42, 6741-6747 (2009). https://doi.org/10.1021/ma901182u