DOI QR코드

DOI QR Code

인-질소 화합물 조합에 의해 처리된 목재의 연소성

Combustion Properties of Wood Treated by Combining Phosphorus-Nitrogen Compounds

  • 진의 (강원대학교 소방방재연구센터) ;
  • 정영진 (강원대학교 소방방재공학과) ;
  • 김시국 ((주)태산전자)
  • Jin, Eui (Fire & Disaster Prevention Research Center, Kangwon National University) ;
  • Chung, Yeong-Jin (Department of Fire Protection Engineering, Kangwon National University) ;
  • Kim, Si-Kuk (Tae San Electronics Co., Ltd.)
  • 투고 : 2015.10.23
  • 심사 : 2015.11.17
  • 발행 : 2016.02.10

초록

이 연구에서는 피로인산/암모늄이온, 메틸렌피페라지노메틸-비스-포스폰산, 메틸렌피페라지노메틸-비스-포스폰산/암모늄이온의 화학 첨가제로 처리된 리기다 소나무의 연소 특성을 고찰하였다. 15 wt%의 화학 첨가제 수용액으로 각각 리기다 소나무에 3회 붓칠하여 실온에서 건조시킨 후, 콘칼로리미터(ISO 5660-1)를 이용하여 연소성을 시험하였다. 그 결과, 화학 첨가제로 처리한 시험편의 최대질량감소율도달시간(PMLR time)은 무처리 시험편에 비교하여 10.5~47.4% 지연되었다. 그리고 최대일산화탄소발생률($CO\;_{peak}$)은 무처리 시험편에 비교하여 32.1~71.4% 증가하였다. 또한 총연기방출률(TSRR)은 화학 첨가제로 처리한 시험편이 무처리한 시험편보다 15.6~43.6% 증가하였다. 특히, 단위면적당 연기방출속도(RSR)에 대하여 $PP/4NH_4{^+}$로 처리한 시험편을 제외하고, 무처리 시험편보다 29.4~41.5% 높게 나타났다. 이와 같이 유기성 화학 첨가제로 처리한 시험편은 연소억제 작용에 의하여 연소시간이 길어짐에 따라 연기방출률이 높았다. 그러나 $PP/4NH_4{^+}$은 무기물 첨가제로서 일부 감연 작용을 하는 것으로 보인다. 따라서 화학 첨가제로 처리한 시험편은 무처리 시험편과 비교하여 연소가스 및 연기발생을 부분적으로 증가시켰다.

과제정보

연구 과제 주관 기관 : 강원대학교

참고문헌

  1. J. C. Middleton, S. M. Dragoner, and F. T. Winters, Jr., An evaluation of borates and other inorganic salts as fire retardants for wood products, Fore. Prod. J., 15(12), 463-467 (1965).
  2. I. S. Goldstein and W. A. Dreher, A non-hygroscopic fire retardant treatment for wood, Fore. Prod. J., 11(5), 235-237 (1961).
  3. R. Kozlowski and M. Hewig, 1st Int Conf., Progress in Flame Retardancy and Flammability Testing, Institute of Natural Fibres, Pozman, Poland (1995).
  4. R. Stevens, S. E. Daan, R. Bezemer, and A. Kranenbarg, The strucure- activity relationship of retardant phosphorus compounds in wood, Polym. Degrad. Stab., 91(4), 832-841 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.06.014
  5. Y. J. Chung, Flame retardancy of veneers treated by ammonium salts, J. Korean Ind. Eng. Chem., 18(3), 251-255 (2007).
  6. M. L. Hardy, Regulatory status and environmental properties of brominated flame retardants undergoing risk assessment in the EU: DBDPO, OBDPO, PeBDPO and HBCD, Polym. Degrad. Stab., 64(3), 545-556 (1999). https://doi.org/10.1016/S0141-3910(98)00141-4
  7. Y. Tanaka, Epoxy Resin Chemistry and Technology, Marcel Dekker, New York (1988).
  8. ISO 5660-1, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 1: Heat Release Rate (Cone Calorimeter Method), Genever (2002).
  9. V. Babrauskas, New Technology to reduce Fire Losses and Costs, eds. S. J. Grayson and D. A. Smith, Elsevier Applied Science Publisher, London, UK. (1986).
  10. M. M. Hirschler, Thermal decomposition and chemical composition, 239, ACS Symp. Ser., 797, 293-306 (2001).
  11. C. H. Lee, C. W. Lee, J. W. Kim, C. K. Suh, and K. M. Kim, Organic phosphorus-nitrogen compounds, manufacturing method and compositions of flame retardants containing organic phosphorus- nitrogen compounds, Korean Patent 2011-0034978 (2011).
  12. O. Grexa, E. Horvathova, O. Besinova, and P. Lehocky, Falme Retardant Treated Plyood, Polym. Degrad. Stab., 64(3), 529-533 (1999). https://doi.org/10.1016/S0141-3910(98)00152-9
  13. Cischem Com, Flame Retardants, Chischem. Com. Co., Ltd., Korea (2009).
  14. J. J. Choi, Y. J. Chung, S. K. Kim, D. I. Shin, B. Y. Lee, H. J. Park, et. al., Development of Technology for Eco-Friendly Flame Retardant Agent and Retardant Treatment, NEMA Next Generation 2010-011, National Emergency Management Agency (2013).
  15. Y. J. Chung, Combustion characteristics of Pinus Rigida Specimens Treated with Phosphorus-Nitrogen Addditives, Fire Sci. Eng., 29(6), in Press (2015).
  16. Y. J. Chung and E. Jin, Synthesis of Alkylenediaminoalkyl- Bis-Phosphonic Acid Derivatives, J. Kor. Oil Chem. Soc., 30(1), 1-8 (2013). https://doi.org/10.12925/jkocs.2013.30.1.001
  17. Kosha, Material Safety Data Sheet in Chemical Materials Information, Kosha, Korea (2014).
  18. R. S. Berns, Billmeyer and Saltszman's Principles of Color Technology, Wiley Intersciences (2000).
  19. W. T. Simpso, Drying and Control of Moisture Content and Dimensional Changes, Chap. 12, Wood Handbook-Wood as an Engineering Material, Forest Product Laboratory U.S.D.A., Forest Service Madison, Wisconsin, U.S.A. 1-21 (1987).
  20. V. Babrauskas, The SFPE Handbook of Fire Protection Engineering, Fourth Ed., National Fire Protection Association, Massatusetts, U.S.A. (2008).
  21. M. J. Spearpoint and G. J. Quintiere, Predicting the Burning of Wood Using an Integral Model, Combust. Flame, 123, 308-325 (2000). https://doi.org/10.1016/S0010-2180(00)00162-0
  22. ISO 5660-2, Reaction-to-Fire Tests-Heat Release, Smoke Production and Mass Loss Rate-Part 2: Smoke Production Rate Heat (Dynamic Measurement), Genever (2002).
  23. A. P. Mourituz, Z. Mathys, and A. G. Gibson, Heat Release of Polymer Composites in Fire, Composites: Part A, 38(7), 1040-1054 (2005).
  24. M. M. Hirscher, Reduction of smoke formation from and flammability of thermoplastic polymers by metal oxides, Polymer, 25, 405-411 (1984). https://doi.org/10.1016/0032-3861(84)90296-9
  25. J. Zhang, D. D. Jiang, and C. A. Wilkie, Thermal and flame properties of polyethylene and polypropylene nanocomposites based on an oligomerically-modified clay, Polm. Degrad. Stab., 91(2), 298-304 (2006). https://doi.org/10.1016/j.polymdegradstab.2005.05.006
  26. Y. J. Chung, H. M. Lim, E. Jin, and J. K. Oh, Combustion-retardation properties of low density polyethylene and etylene vinyl acetate mixtures with magnesium hydroxide, Appl. Chem. Eng., 22, 439-443 (2011).
  27. S. Ishihara, Smoke and Toxic Gases Produced During Fire, Wood Resh. Tech. Notes, 16(5), 49-62 (1981).