Short-time creep, fatigue and mechanical properties of 42CrMo4 - Low alloy structural steel

  • Brnic, Josip ;
  • Canadija, Marko ;
  • Turkalj, Goran ;
  • Krscanski, Sanjin ;
  • Lanc, Domagoj ;
  • Brcic, Marino ;
  • Gao, Zeng
  • Received : 2016.04.14
  • Accepted : 2016.11.03
  • Published : 2016.11.20


The proper selection of materials for the intended use of the structural member is of particular interest. The paper deals with determining both the mechanical properties at different temperatures and the behavior in tensile creep as well as fatigue testing of tensile stressed specimens made of low alloy 42CrMo4 steel delivered as annealed and cold drawn. This steel is usually used in engineering practice in design of statically and dynamically stressed components. Displayed engineering stress - strain diagrams indicate the mechanical properties, creep curves indicate the material creep behavior while experimental investigations of fatigue may ensure the fatigue limit determination for considered stress ratio. Also, hardness testing provides an insight into material resistance to plastic deformation. Experimentally obtained results regarding material properties were: tensile strength (735 MPa / $20^{\circ}C$, 105 MPa / $680^{\circ}C$), yield strength (593 MPa / $20^{\circ}C$, 76 MPa / $680^{\circ}C$). Fatigue limit in the amount of 532.26 MPa, as maximum stress at stress ratio R = 0.25 at ambient temperature was calculated on the basis of experimentally obtained results. Regarding the creep resistance it is visible that this steel can be treated as creep resistant at high temperatures (including $580^{\circ}C$) when applied stress is of low level (till 0.2 of yield stress).


42CrMo4 steel;mechanical properties;short-time creep;fatigue;fatigue limit


  1. Annual Book of ASTM Standards (2015), Metals - Mechanical Testing; Elevated and Low-Temperature Tests; Metallography, Vol. 03.01, ASTM International, Baltimore, MD, USA.
  2. Bathe, K.J. (1996), Finite Element Procedure, Prentice-Hal, Inc., NJ, USA.
  3. Brnic, J., Canadija, M., Turkalj, G. and Lanc, D. (2009), "Tool material behavior at elevated temperatures", Mater. Manuf. Process., 24(7-8), 758-762.
  4. Brnic, J., Canadija, M., Turkalj, G. and Lanc, D. (2010a), "Structural steel ASTM A709-behavior at uniaxial tests conducted at lowered and elevated temperatures, short-time creep response and fracture toughness calculation", J. Eng. Mech., 136(9), 1083-1089.
  5. Brnic, J., Canadija, M., Turkalj, G. and Lanc, D. (2010b), "50CrMo4 steel-determination of mechanical properties at lowered and elevated temperatures, creep behavior and fracture toughness calculation", J. Eng. Mater. Technol., 132(2), 021004-1-021004-6.
  6. Brnic, J., Turkalj, G., Canadija, M. and Lanc, D. (2011), "AISI 316Ti (1.4571) steel-mechanical, creep and fracture properties versus temperature", J. Constr. Steel Res., 67(12), 1948-1952.
  7. Brnic, J., Turkalj, G., Canadija, M., Lanc, D. and Krscanski, S. (2012), "Responses of austenitic stainless steel American Iron and Steel Institute (AISI) 303 (1.4305) subjected to different environmental conditions", J. Test. Eval., 40(2), 319-328.
  8. Brnic, J., Turkalj, G., Niu, J., Canadija, M. and Lanc, D. (2013), "Analysis of experimental data on the behavior of Steel S275JR - Reliability of modern design", Mater. Des., 47, 497-594.
  9. Brnic, J., Turkalj, G. and Canadija, M. (2014a), "Mechanical testing of the behavior of steel 1.7147 at different temperatures", Steel Compos. Struct., Int. J., 17(5) 549-560
  10. Brnic, J., Turkalj, G., Canadija, M. and Niu, J. (2014b), "Experimental determination and prediction of the mechanical properties of steel 1.7225", Mater. Sci. Eng. A, 600, 47-52.
  11. Brnic, J., Turkalj, G., Krscanski, S., Lanc, L., Canadija, M. and Brcic, M. (2014c), "Information relevant for the design of structure: ferritic - heat resistant high chromium steel X10CrAlSi25", Mater. Des., 63, 508-518.
  12. Brnic, J., Turkalj, G., Lanc, D., Canadija, M., Brcic, M. and Vukelic, G. (2014d), "Comparison of material properties: Steel 20MnCr5 and similar steels", J. Construct. Steel Res., 95, 81-89.
  13. Brnic, J., Turkalj, G., Canadija, M., Krscanski, S., Brcic, M. and Lanc, D. (2015), "Deformation behavior and material properties of austenitic heat - Resistant Steel X15CrNiSi25-20 subjected to high temperatures and creep", Mater. Des., 69, 219-229.
  14. Brooks, C.R. and Choudhury, A. (2002), Failure Analysis of Engineering Materials, McGraw - Hill, USA.
  15. Cerny, I. and Sis, J. (2014), "Fatigue strength of laser hardened 42CrMo4 steel considering effects of compressive residual stresses on short crack growth", Procedia Eng., 74, 417-420.
  16. Collins, J.A. (1993), Failure of Materials in Mechanical Design, (2nd Ed.), John Wiley & Sons, New York, NY, USA.
  17. Craig, R.R. Jr. (2011), Mechanics of Materials, (3rd Ed.), John Wiley & Sons, USA.
  18. Draper, N.R. and Smith, H. (1998), Applied Regression Analysis, Wiley- Interscience Publications, USA.
  19. Farahmand, B., Bockrath, G. and Glassco, J. (1997), Fatigue and Fracture Mechanics of High Risk Parts, Chapman & Hall, New York, NY, USA.
  20. Findley, W.N., Lai, J. and Onaran, S.K. (1989), Creep and Relaxation of Nonlinear Viscoelastic Materials, Dover Publication, New York, NY, USA.
  21. Goncza, P., Potocnik, R. and Glodez, S. (2010), "Fatigue behaviour of 42CrMo4 steel under contact loading", Procedia Eng., 2(1), 1991-1999.
  22. Herakovic, N. and Bevk, B. (2010), "Analysis of the material and the actuator influence on the characteristics of a pneumatic valve", Mater. Tehnologije, 44(1), 37-40.
  23. ISO 12107:2012 (E) (2012), Metallic materials - Fatigue testing - Statistical planning and analysis of data.
  24. Krewerth, D., Weidner, A. and Biermann, H. (2013), "Investigation of the damage behavior of cast steel 42CrMo4 during ultrasonic fatigue by combination of thermography and fractography", Adv. Eng. Mater., 15(12), Special Issue, 1251-1259.
  25. Milutinovic, M., Movrin, M. and Pepelnjak, T. (2012), "Theoretical and experimental investigation of cold hobbing processes in cases of cone-like punch manufacturing", Int. J. Adv. Manuf. Technol., 58(9-12), 895-906.
  26. Pepelnjak, T., Gantar, G. and Kuzman, K. (2001), "Numerical simulations in optimization of product and forming process", J. Mater. Process. Technol., 115(1) 122-126.
  27. Pollak, R.D. (2005), "Analysis of methods for determining high cycle fatigue strength of a material with investigation of Ti-6Al-4V gigacycle fatigue behavior", Disertation; Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, USA.
  28. Raghavan, V. (2004), Materials Science and Engineering, Prentice- Hall of India, New Delhi, India.
  29. Stanczyk, M. and Figlus, T. (2014), "The influence of the hardening coolant on the properties of hot rolled bars of the steel 42CrMo4", Metalurgija, 53(4), 493-496.
  30. Sturm, R., Grum, I. and Bozic, S. (2011), "Influence of the alloying elements in Al-Si alloys on the laser remelting process", Laser Eng., 22(1-2), 47-61.
  31. Terres, M.A., Ben Mohamed, S. and Sidhom, H. (2010), "Influence of ion nitriding on fatigue strength of low-alloy (42CrMo4) steel: Experimental characterization and predictive approach", Int. J. Fatigue, 32(11), 1795-1804.
  32. Terres, M.A., Laalai, N. and Sidhom, H. (2012), "Effect of nitriding and shot-peening on the fatigue behavior of 42CrMo4 steel: Experimental analysis and predictive approach", Mater. Des., 35, 741-748.

Cited by

  1. Comparison of the mechanical behavior of materials subjected to specific operating conditions vol.378, pp.1757-899X, 2018,


Supported by : Croatian Science Foundation, University of Rijeka