Amorphous Vanadium Titanates as a Negative Electrode for Lithium-ion Batteries

  • Lee, Jeong Beom (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Chae, Oh. B. (Battery R&D, LG Chem. Research Park, LG Chem. Ltd.) ;
  • Chae, Seulki (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University) ;
  • Ryu, Ji Heon (Graduate School of Knowledge-based Technology and Energy, Korea Polytechnic University) ;
  • Oh, Seung M. (Department of Chemical and Biological Engineering and Institute of Chemical Processes, Seoul National University)
  • Received : 2016.11.24
  • Accepted : 2016.12.12
  • Published : 2016.12.31


Amorphous vanadium titanates (aVTOs) are examined for use as a negative electrode in lithium-ion batteries. These amorphous mixed oxides are synthesized in nanosized particles (<100 nm) and flocculated to form secondary particles. The $V^{5+}$ ions in aVTO are found to occupy tetrahedral sites, whereas the $Ti^{4+}$ ions show fivefold coordination. Both are uniformly dispersed at the atomic scale in the amorphous oxide matrix, which has abundant structural defects. The first reversible capacity of an aVTO electrode ($295mAhg^{-1}$) is larger than that observed for a physically mixed electrode (1:2 $aV_2O_5$ | $aTiO_2$, $245mAhg^{-1}$). The discrepancy seems to be due to the unique four-coordinated $V^{5+}$ ions in aVTO, which either are more electron-accepting or generate more structural defects that serve as $Li^+$ storage sites. Coin-type Li/aVTO cells show a large irreversible capacity in the first cycle. When they are prepared under nitrogen (aVTO-N), the population of surface hydroxyl groups is greatly reduced. These groups irreversibly produce highly resistive inorganic compounds (LiOH and $Li_2O$), leading to increased irreversible capacity and electrode resistance. As a result, the material prepared under nitrogen shows higher Coulombic efficiency and rate capability.


Supported by : National Research Foundation of Korea


  1. M. Winter, J.O. Besenhard, M.E. Spahr, P. Novak, Adv. Mater., 1998, 10(10), 725-763.<725::AID-ADMA725>3.0.CO;2-Z
  2. J.-M. Tarascon, M. Armand, Nature., 2001, 414(6861), 359-367.
  3. T.H. Kim, J.S. Park, S.K. Chang, S. Choi, J.H. Ryu, H.K. Song, Adv. Energy Mater., 2012, 2(7), 860-872.
  4. T. Ohzuku, T. Kodama, T. Hirai, J. Power Sources., 1985, 14(1), 153-166.
  5. K.M. Colbow, J.R. Dahn, R.R. Haering, J. Power Sources., 1989, 26(3-4), 397-402.
  6. T. Ohzuku, J. Electrochem. Soc., 1995, 142(5), 1431-1435.
  7. R. Inada, K. Shibukawa, C. Masada, Y. Nakanishi, Y. Sakurai, J. Power Sources., 2014, 253, 181-186.
  8. L. Kavan, K. Kratochvilová, M. Gratzel, J. Electroanal. Chem., 1995, 394(1), 93-102.
  9. L. Kavan, M. Gratzel, J. Rathouskyb, A. Zukalba, J. Electrochem. Soc., 1996, 143(2), 394-400.
  10. M.S. Balogun, C. Li, Y. Zeng, M. Yu, Q. Wu, M. Wu, X. Lu, Y. Tong, J. Power Sources., 2014, 272, 946-953.
  11. U. Lafont, C. D., G. Mountjoy, A. V. Chadwick, E.M. Kelder, J. Phys. Chem. C., 2010, 114(2), 1372-1378.
  12. M. Wagemaker, W.J.H. Borghols, E.R.H. Van Eck, A.P.M. Kentgens, G.J. Kearley, F.M. Mulder, Chem. - A Eur. J., 2007, 13(7), 2023-2028.
  13. J.S. Chen, X.W. Lou, J. Power Sources., 2010, 195(9), 2905-2908.
  14. Y. Ren, Z. Liu, F. Pourpoint, A.R. Armstrong, C.P. Grey, P.G. Bruce, Angew. Chemie - Int. Ed., 2012, 51(9), 2164-2167.
  15. Q. Wu, J. Xu, X. Yang, F. Lu, S. He, J. Yang, H.J. Fan, M. Wu, Adv. Energy Mater., 2015, 5, 1401756.
  16. W. Li, F. Wang, Y. Liu, J. Wang, J. Yang, L. Zhang, A.A. Elzatahry, D. Al-Dahyan, Y. Xia, D. Zhao, Nano Lett., 2015, 15(3), 2186-2193.
  17. H. Liu, W. Li, D. Shen, D. Zhao, G. Wang, J. Am. Chem. Soc., 2015, 137(40), 13161-13166.
  18. W.J.H. Borghols, D. Lu?tzenkirchen-Hecht, U. Haake, W. Chan, U. Lafont, E.M. Kelder, E.R.H. van Eck, A.P.M. Kentgens, F.M. Mulder, M. Wagemaker, J. Electrochem. Soc., 2010, 157(5), A582-A588.
  19. J.H. Ku, J.H. Ryu, S.H. Kim, O.H. Han, S.M. Oh, Adv. Funct. Mater., 2012, 22(17), 3658-3664.
  20. O.B. Chae, J. Kim, I. Park, H. Jeong, J.H. Ku, J.H. Ryu, K. Kang, S.M. Oh, Chem. Mater., 2014, 26(20), 5874-5881.
  21. J. Jang, S.-M. Kim, Y. Kim, K.H. Park, J.H. Ku, J.H. Ryu, S.M. Oh, Isr. J. Chem., 2015, 55(5), 604-610.
  22. J. Dahn, T. Zheng, Y. Liu, J. Xue, Science, 1995, 270(5236), 590.
  23. C.W. Park, S.H. Yoon, S.I. Lee, S.M. Oh, Carbon, 2000, 38(7), 995-1001.
  24. H. Xiong, M. Slater, J. Phys. Chem. Lett., 2011, 2(20), 2560-2565.
  25. Y. Fang, L. Xiao, J. Qian, X. Ai, H. Yang, Y. Cao, Nano Lett., 2014, 14(6), 3539-3543.
  26. S. Hamaguchi, H. Yoshitake, Electrochemistry, 2009, 77(5), 373-378.
  27. M. Hibino, K. Abe, M. Mochizuki, M. Miyayama, J. Power Sources., 2004, 126(1), 139-143.
  28. C. Delmas, S. Brethes, J. Power Sources., 1991, 34(2), 113-118.
  29. C. Delmas, J.M. Cocciantelli, J.P. Doumerc, Solid State Ionics., 1994, 69(3-4), 257-264.
  30. Q. An, F. Lv, Q. Liu, C. Han, K. Zhao, J. Sheng, Q. Wei, M. Yan, L. Mai, Nano Lett. 2014, 14(11), 6250-6256.
  31. C. Niu, M. Huang, P. Wang, J. Meng, X. Liu, X. Wang, K. Zhao, Y. Yu, Y. Wu, C. Lin, L. Mai, Nano Res. 2016, 9(1), 128-138.
  32. H. Hirashima, S. Kamimura, R. Muratake, T. Yoshida, J. Non. Cryst. Solids., 1988, 100(1-3), 394-398.
  33. Y. Wei, J. Zhou, J. Zheng, C. Xu, Electrochim. Acta., 2015, 166, 277-284.
  34. S. Södergren, H. Siegbahn, H. Rensmo, H. Lindström, A. Hagfeldt, S.-E. Lindquist, J. Phys. Chem. B., 1997, 101(16), 3087-3090.
  35. K. Tasaki, A. Goldberg, J.-J. Lian, M. Walker, A. Timmons, S.J. Harris, J. Electrochem. Soc. 2009, 156(12), A1019-A1027.
  36. L.R. Pizzio, Mater. Lett. 2005, 59(8), 994-997.
  37. J. Wong, F. Lytle, R. Messmer, Phys. Rev. B., 1984, 30(10), 5596.
  38. Tsunehiro Tanaka, H. Yamashita, R. Tsuchitani, T. Funabiki, S. Yoshida, J. Chem. Soc. Faraday Trans., 1988, 84(9), 2987-2999.
  39. H. Jie, H. Park, K.-B. Lee, H.-J. Chang, J.-P. Ahn, J.-K. Park, Surf. Interface Anal. 2012, 44(11-12), 1449-1452
  40. Z.Y. Wu, G. Ouvrard, P. Gressier, C.R. Natoli, Phys. Rev. B., 1997, 55(16), 10382.
  41. F. Farges, G. Brown, J. Rehr, Phys. Rev. B., 1997, 56(4), 1809-1819.
  42. H. Yoshitake, T. Sugihara, T. Tatsumi, Phys. Chem. Chem. Phys., 2003, 5(4), 767-772.
  43. J.-Y. Shin, D. Samuelis, J. Maier, Adv. Funct. Mater., 2011, 21(18), 3464-3472.
  44. H. Kawai, M. Nagata, H. Kageyama, H. Tukamoto, A.R. West, Electrochim. Acta, 1999, 45(1), 315-327.
  45. S. Klosek, D. Raftery, J. Phys. Chem. B., 2001, 105(14), 2815-2819.
  46. G. Salek, B. Bellanger, I. Mjejri, M. Gaudon, A. Rougier, Inorg. Chem., 2016, 55(19), 9838-9847.
  47. B. Siemensmeyer, J. Schultze, Surf. Interface Anal., 1990, 16, 309-314.
  48. P. Verma, P. Maire, P. Novak, Electrochim. Acta, 2010, 55(22), 6332-6341.
  49. R. Dedryvere, S. Laruelle, S. Grugeon, L. Gireaud, J.-M. Tarascon, D. Gonbeau, J. Electrochem. Soc., 2005, 152(4), A689-A696.
  50. K.E. Swider-Lyons, C.T. Love, D.R. Rolison, Solid State Ionics, 2002, 152, 99-104.
  51. F.-M. Wang, J. Rick, Solid State Ionics, 2014, 268, 31-34.

Cited by

  1. From Crystalline to Amorphous: An Effective Avenue to Engineer High-Performance Electrode Materials for Sodium-Ion Batteries vol.5, pp.19, 2018,