Simple and Ultrasensitive Chemically Amplified Electrochemical Detection of Ferrocenemethanol on 4-Nitrophenyl Grafted Glassy Carbon Electrode

  • Koh, Ahyeon (Department of Chemistry and Biomedical Engineering, Sogang University) ;
  • Lee, Junghyun (Department of Chemistry and Biomedical Engineering, Sogang University) ;
  • Song, Jieun (Department of Chemistry and Biomedical Engineering, Sogang University) ;
  • Shin, Woonsup (Department of Chemistry and Biomedical Engineering, Sogang University)
  • Received : 2016.10.28
  • Accepted : 2016.10.29
  • Published : 2016.12.31


Chemically amplified electrochemical detection, redox-active probe being amplified its electrochemical anodic current by a sacrificial electron donor presenting in solution, holds great potential for simple and quantitative bioanalytical analysis. Herein, we report the chemically amplified electrochemical analysis that drastically enhanced a detection of ferrocenemethanol (analyte) by ferrocyanide (chemical amplifier) on 4-nitrophenyl grafted glassy carbon electrodes at $60^{\circ}C$. The glassy carbon electrode grafted with a 4-nitrophenyl group using an electrochemical reduction suppressed the oxidation of ferrocyanide and thus enabled detection of ferrocenemethanol with excellent selectivity. The ferrocenemethanol was detected down to an nM range using a linear sweep voltammetry under kinetically optimized conditions. The detection limit was improved by decreasing the concentration of the ferrocyanide and increasing temperature.


Supported by : National Research Foundation (NRF)


  1. A. P. Doherty, M. A. Stanley, D. Leech and J. G. Vos, Anal. Chim. Acta, 1996, 319(1), 111-120.
  2. T. Yao, S. Suzuki, T. Nakahara and H. Nishino, Talanta, 1998, 45(5), 917-923.
  3. S. Cosnier, C. Gondran, J.-C. Watelet, W. D. Giovani, R. P. M. Furriel and F. A. Leone, Anal. Chem., 1998, 70(18), 3952-3956.
  4. T. J. Moore, M. J. Joseph, B. W. Allen and L. A. Coury, Anal. Chem., 1995, 67(11), 1896-1902.
  5. K. B. Male, P. O. Gartu, A. A. Kamen and J. H. T. Luong, Biotechnol. Bioeng., 1997, 55(3), 497-504.<497::AID-BIT5>3.0.CO;2-7
  6. C. G. Bauer, A. V. Eremenko, E. Ehrentreich-Forster, F. F. Bier, A. Makower, H. B. Halsall, W. R. Heineman and F. W. Scheller, Anal. Chem., 1996, 68(15), 2453-2458.
  7. E. Katz and I. Willner, J. Electroanal. Chem., 1996, 418(1), 67-72.
  8. D. J. Caruana and A. Heller, J. Am. Chem. Soc., 1999, 121(4), 769-774.
  9. D. Zheng, N. Wang, F.-Q. Wang, D. Dong, Y.-G. Li, X.-Q. Yang, L.-H. Guo and J. Cheng, Anal. Chim. Acta, 2004, 508(2), 225-231.
  10. C. Shi and F. C. Anson, J. Phys. Chem. B, 1998, 102(49), 9850-9854.
  11. P. T. Radford, M. French, and S. E. Creager, Anal. Chem., 1999, 71(22), 5101-5108.
  12. P. Allongue, M. Delamar, B. Desbat, O. Fagebaume, R.Hitomi, J. Pinson and J.-M. Save'ant, J. Am. Chem. Soc., 1997, 119(1), 201-207.
  13. C. Saby, B. Ortiz, G. Y. Champagne and D. Be'langer, Langmuir, 1997, 13(25), 6805-6813.
  14. M. D''Amours and D. Be'langer, J. Phys. Chem. B, 2003, 107(20), 4811-4817.
  15. S. Baranton and D. Be'langer, J. Phys. Chem. B, 2005, 109(51), 24401-24410
  16. G. Liu, J. Liu, T. Böcking, P. K. Eggers and J. J. Gooding, Chem. Phys., 2005, 319(1), 136-146.
  17. A. J. Bard and L. R. Faulkner, Electrochemical methods-Fundametals and applications. second ed.; John Wiley & Sons. Inc.: p 501 (2001).
  18. G. E. McManis, R. M. Nielson, A. Gochev and M. J. Weaver, J. Am. Chem. Soc., 1989, 111(15), 5533-5541.
  19. R. M. Nielson, G. E. McManis, L. K. Safford and M. J. Weaver, J. Phys. Chem., 1989, 93(5), 2152-2157.
  20. E. S. Yang, M.-S. Chan and A. C. Wahl, J. Phys. Chem., 1975, 79(19), 2049-2052.
  21. E. S. Yang, M.-S. Chan and A. C. Wahl, A. C. J. Phys. Chem. B, 1980, 84(23), 3094-3099.
  22. A. Olivier, E. Merienne, J. P. Chopart and O. Aaboubi, Electrochim. Acta. 1992, 37(11), 1945-1950.
  23. T. Vos, P. Grundler, A. Kirbs and G.-U. Flechsig, Electrochem. Commun., 1999, 1(9), 383-388.