DOI QR코드

DOI QR Code

Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells

  • Park, Hee-Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeon, Tae-Yeol (Pohang Accelerator Laboratory) ;
  • Lee, Kug-Seung (Pohang Accelerator Laboratory) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung, Young-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2016.08.29
  • Accepted : 2016.10.05
  • Published : 2016.12.31

Abstract

Carbon-supported ordered Pt-Ti alloy nanoparticles were prepared as a durable and efficient oxygen reduction reaction (ORR) electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs) via wet chemical reduction of Pt and Ti precursors with heat treatment at $800^{\circ}C$. X-ray diffraction analysis confirmed that the prepared electrocatalysts with Ti precursor molar compositions of 40% (PtTi40) and 25% (PtTi25) had ordered $Pt_3Ti$ and $Pt_8Ti$ structures, respectively. Comparison of the ORR polarization before and after 1500 electrochemical cycles between 0.6 and 1.1 V showed little change in the ORR polarization curve of the electrocatalysts, demonstrating the high stability of the PtTi40 and PtTi25 alloys. Under the same conditions, commercial carbon-supported Pt nanoparticle electrocatalysts exhibited a negative potential shift (10 mV) in the ORR polarization curve after electrochemical cycling, indicating degradation of the ORR activity.

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea

References

  1. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima and N. Iwashita, Chem. Rev., 2007, 107(10), 3904-3951. https://doi.org/10.1021/cr050182l
  2. GreeleyJ, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, RossmeislJ, ChorkendorffI and J. K. Norskov, Nat. Chem., 2009, 1, 552-556. https://doi.org/10.1038/nchem.367
  3. S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung and S. J. Yoo, J. Am. Chem. Soc., 2012, 134(48), 19508-19511. https://doi.org/10.1021/ja307951y
  4. S. J. Yoo, S. J. Hwang, J.-G. Lee, S.-C. Lee, T.-H. Lim, Y.-E. Sung, A. Wieckowski and S.-K. Kim, Energy Environ. Sci., 2012, 5(6), 7521-7525. https://doi.org/10.1039/c2ee02691k
  5. S. J. Yoo, K.-S. Lee, S. J. Hwang, Y.-H. Cho, S.-K. Kim, J. W. Yun, Y.-E. Sung and T.-H. Lim, Int. J. Hydrog. Energy, 2012, 37(12), 9758-9765. https://doi.org/10.1016/j.ijhydene.2012.03.089
  6. K. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu and R. R. Adzic, Nat. Commun., 2014, 5, 5185. https://doi.org/10.1038/ncomms6185
  7. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo and H. D. Abruna, Nat. Mater., 2013, 12, 81-87. https://doi.org/10.1038/nmat3458
  8. B. Arumugam, T. Tamaki and T. Yamaguchi, ACS Appl. Mater. Interfaces, 2015, 7(30), 16311-16321. https://doi.org/10.1021/acsami.5b03137
  9. T. Tamaki, A. Minagawa, B. Arumugam, B. A. Kakade and T. Yamaguchi, J. Power Sources, 2014, 271, 346-353. https://doi.org/10.1016/j.jpowsour.2014.08.005
  10. Z. Cui, H. Chen, W. Zhou, M. Zhao and F. J. DiSalvo, Chem. Mater., 2015, 27(21), 7538-7545. https://doi.org/10.1021/acs.chemmater.5b03912
  11. X. Li, L. An, X. Chen, N. Zhang, D. Xia, W. Huang, W. Chu and Z. Wu, Sci. Rep., 2013, 3, 3234. https://doi.org/10.1038/srep03234
  12. H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruna and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130, 5452-5458.H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130(16), 5452-5458. https://doi.org/10.1021/ja075061c
  13. G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata, S.-i. Matsumoto, H. Yoshikawa and Y. Yamabe-Mitarai, Langmuir, 2010, 26(13), 11446-11451. https://doi.org/10.1021/la100942h
  14. C. Schottle, D. E. Doronkin, R. Popescu, D. Gerthsen, J.-D. Grunwaldt and C. Feldmann, Chem. Commun., 2016, 52(37), 6316-6319. https://doi.org/10.1039/C6CC01957A
  15. Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2014, 136(29), 10206-10209. https://doi.org/10.1021/ja504573a
  16. E. Ding, K. L. More and T. He, J. Power Sources, 2008, 175(2), 794-799. https://doi.org/10.1016/j.jpowsour.2007.10.010
  17. H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1973, 95(5), 1669-1671. https://doi.org/10.1021/ja00786a057
  18. N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 2014, 114(15), 7610-7630. https://doi.org/10.1021/cr400544s
  19. A. Holewinski and S. Linic, J. Electrochem. Soc., 2012, 159(11), H864-H870. https://doi.org/10.1149/2.022211jes
  20. J. X. Wang, F. A. Uribe, T. E. Springer, J. Zhang and R. R. Adzic, Faraday Discuss., 2009, 140, 347-362. https://doi.org/10.1039/B802218F
  21. Q. Dong, S. Santhanagopalan and R. E. White, J. Electrochem. Soc., 2007, 154(9), A888-A899. https://doi.org/10.1149/1.2756994
  22. S. Gallego, C. Ocal, M. C. Muñoz and F. Soria, Phys. Rev. B, 1997, 56(19), 12139-12142. https://doi.org/10.1103/PhysRevB.56.12139
  23. S. W. Lee, S. Chen, J. Suntivich, K. Sasaki, R. R. Adzic and Y. Shao-Horn, J. Phys. Chem. Lett., 2010, 1(9), 1316-1320. https://doi.org/10.1021/jz100241j
  24. J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer, Beilstein J. Nanotechnol., 2014, 5, 44-67. https://doi.org/10.3762/bjnano.5.5