Carbon-Supported Ordered Pt-Ti Alloy Nanoparticles as Durable Oxygen Reduction Reaction Electrocatalyst for Polymer Electrolyte Membrane Fuel Cells

  • Park, Hee-Young (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Jeon, Tae-Yeol (Pohang Accelerator Laboratory) ;
  • Lee, Kug-Seung (Pohang Accelerator Laboratory) ;
  • Yoo, Sung Jong (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Sung, Young-Eun (School of Chemical and Biological Engineering, Seoul National University) ;
  • Jang, Jong Hyun (Fuel Cell Research Center, Korea Institute of Science and Technology (KIST))
  • Received : 2016.08.29
  • Accepted : 2016.10.05
  • Published : 2016.12.31


Carbon-supported ordered Pt-Ti alloy nanoparticles were prepared as a durable and efficient oxygen reduction reaction (ORR) electrocatalyst for polymer electrolyte membrane fuel cells (PEMFCs) via wet chemical reduction of Pt and Ti precursors with heat treatment at $800^{\circ}C$. X-ray diffraction analysis confirmed that the prepared electrocatalysts with Ti precursor molar compositions of 40% (PtTi40) and 25% (PtTi25) had ordered $Pt_3Ti$ and $Pt_8Ti$ structures, respectively. Comparison of the ORR polarization before and after 1500 electrochemical cycles between 0.6 and 1.1 V showed little change in the ORR polarization curve of the electrocatalysts, demonstrating the high stability of the PtTi40 and PtTi25 alloys. Under the same conditions, commercial carbon-supported Pt nanoparticle electrocatalysts exhibited a negative potential shift (10 mV) in the ORR polarization curve after electrochemical cycling, indicating degradation of the ORR activity.


Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP), National Research Foundation of Korea


  1. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori, K. Ota, Z. Ogumi, S. Miyata, A. Nishikata, Z. Siroma, Y. Uchimoto, K. Yasuda, K.-i. Kimijima and N. Iwashita, Chem. Rev., 2007, 107(10), 3904-3951.
  2. GreeleyJ, I. E. L. Stephens, A. S. Bondarenko, T. P. Johansson, H. A. Hansen, T. F. Jaramillo, RossmeislJ, ChorkendorffI and J. K. Norskov, Nat. Chem., 2009, 1, 552-556.
  3. S. J. Hwang, S.-K. Kim, J.-G. Lee, S.-C. Lee, J. H. Jang, P. Kim, T.-H. Lim, Y.-E. Sung and S. J. Yoo, J. Am. Chem. Soc., 2012, 134(48), 19508-19511.
  4. S. J. Yoo, S. J. Hwang, J.-G. Lee, S.-C. Lee, T.-H. Lim, Y.-E. Sung, A. Wieckowski and S.-K. Kim, Energy Environ. Sci., 2012, 5(6), 7521-7525.
  5. S. J. Yoo, K.-S. Lee, S. J. Hwang, Y.-H. Cho, S.-K. Kim, J. W. Yun, Y.-E. Sung and T.-H. Lim, Int. J. Hydrog. Energy, 2012, 37(12), 9758-9765.
  6. K. A. Kuttiyiel, K. Sasaki, D. Su, L. Wu, Y. Zhu and R. R. Adzic, Nat. Commun., 2014, 5, 5185.
  7. D. Wang, H. L. Xin, R. Hovden, H. Wang, Y. Yu, D. A. Muller, F. J. DiSalvo and H. D. Abruna, Nat. Mater., 2013, 12, 81-87.
  8. B. Arumugam, T. Tamaki and T. Yamaguchi, ACS Appl. Mater. Interfaces, 2015, 7(30), 16311-16321.
  9. T. Tamaki, A. Minagawa, B. Arumugam, B. A. Kakade and T. Yamaguchi, J. Power Sources, 2014, 271, 346-353.
  10. Z. Cui, H. Chen, W. Zhou, M. Zhao and F. J. DiSalvo, Chem. Mater., 2015, 27(21), 7538-7545.
  11. X. Li, L. An, X. Chen, N. Zhang, D. Xia, W. Huang, W. Chu and Z. Wu, Sci. Rep., 2013, 3, 3234.
  12. H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruna and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130, 5452-5458.H. Abe, F. Matsumoto, L. R. Alden, S. C. Warren, H. D. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2008, 130(16), 5452-5458.
  13. G. Saravanan, H. Abe, Y. Xu, N. Sekido, H. Hirata, S.-i. Matsumoto, H. Yoshikawa and Y. Yamabe-Mitarai, Langmuir, 2010, 26(13), 11446-11451.
  14. C. Schottle, D. E. Doronkin, R. Popescu, D. Gerthsen, J.-D. Grunwaldt and C. Feldmann, Chem. Commun., 2016, 52(37), 6316-6319.
  15. Z. Cui, H. Chen, M. Zhao, D. Marshall, Y. Yu, H. Abruña and F. J. DiSalvo, J. Am. Chem. Soc., 2014, 136(29), 10206-10209.
  16. E. Ding, K. L. More and T. He, J. Power Sources, 2008, 175(2), 794-799.
  17. H. C. Brown and S. Krishnamurthy, J. Am. Chem. Soc., 1973, 95(5), 1669-1671.
  18. N. T. K. Thanh, N. Maclean and S. Mahiddine, Chem. Rev., 2014, 114(15), 7610-7630.
  19. A. Holewinski and S. Linic, J. Electrochem. Soc., 2012, 159(11), H864-H870.
  20. J. X. Wang, F. A. Uribe, T. E. Springer, J. Zhang and R. R. Adzic, Faraday Discuss., 2009, 140, 347-362.
  21. Q. Dong, S. Santhanagopalan and R. E. White, J. Electrochem. Soc., 2007, 154(9), A888-A899.
  22. S. Gallego, C. Ocal, M. C. Muñoz and F. Soria, Phys. Rev. B, 1997, 56(19), 12139-12142.
  23. S. W. Lee, S. Chen, J. Suntivich, K. Sasaki, R. R. Adzic and Y. Shao-Horn, J. Phys. Chem. Lett., 2010, 1(9), 1316-1320.
  24. J. C. Meier, C. Galeano, I. Katsounaros, J. Witte, H. J. Bongard, A. A. Topalov, C. Baldizzone, S. Mezzavilla, F. Schuth and K. J. J. Mayrhofer, Beilstein J. Nanotechnol., 2014, 5, 44-67.