The Synthesis of Na0.6Li0.6[Mn0.72Ni0.18Co0.10]O2 and its Electrochemical Performance as Cathode Materials for Li ion Batteries

  • Choi, Mansoo (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Jo, In-Ho (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Lee, Sang-Hun (Battery Research Center, Korea Electrotechnology Research Institute) ;
  • Jung, Yang-Il (LWR Fuel Technology Division, Korea Atomic Energy Research Institute) ;
  • Moon, Jei-Kwon (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute) ;
  • Choi, Wang-Kyu (Decontamination and Decommissioning Research Division, Korea Atomic Energy Research Institute)
  • Received : 2015.08.17
  • Accepted : 2015.12.11
  • Published : 2016.12.31


The layered $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composite with well crystalized and high specific capacity is prepared by molten-salt method and using the substitution of Na for Li-ion battery. The effects of annealing temperature, time, Na contents, and electrochemical performance are investigated. In XRD analysis, the substitution of Na-ion resulted in the P2-$Na_{2/3}MO_2$ structure ($Na_{0.70}MO_{2.05}$), which co-exists in the $Na_{0.6}Li_{0.6}[Mn_{0.72}Ni_{0.18}Co_{0.10}]O_2$ composites. The discharge capacities of cathode materials exhibited $284mAhg^{-1}$ with higher initial coulombic efficiency.


Supported by : Ministry of Science, ICT & Future Planning


  1. M. Armand and J. M. Tarascon, Nature, 2008, 451(7179), 652-657.
  2. B. Kang and G. Ceder, Nature, 2009, 458(7235), 190-193.
  3. X. Lai, J. E. Halpert and D. Wang, Energy & Environ. Sci, 2012, 5(2), 5604-5618.
  4. Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak and K. Amine, Nat. Mater, 2009, 8(4), 320-324.
  5. M. R. Palacin, Chem. Soc. Rev. 2009, 38(9), 2565-2575.
  6. J.S. Lee, S.T. Kim, R. Cao, N.S. Choi, M. Liu, K.T. Lee, J. Cho, Adv. Energy Mater, 2011, 1(1), 34-50.
  7. R. Wang, X. He, L. He, F. Wang, R. Xiao, L. Gu, H. Li, L. Chen, Adv. Energy Mater, 2013, 3(10), 1358-1367.
  8. Z. Yang, J. Zhang, M. Kintner-Meyer, X. Lu, D. Choi, J. Lemmon, J. Liu, Chem. Rev, 2011, 111(5), 3577-3613.
  9. M. Choi, G. Ham, B.-S. Jin, S.-M. Lee, Y. Lee, G. Wang, H.-S. Kim, J. Alloys compd, 2014, 608, 110-117.
  10. D. Yuan, W. He, F. Pei, F. Wu, Y, Wu, J. Qian, Y. Cao, X. Ai, H. Yang, J. Mater. Chem A, 2013, 1(12), 3895-3899.
  11. J. Liu, L. Chen, M. Hou, F. Wang, R. Che, Y. Xia, J. Mater. Chem, 2012, 22(48), 25380-25387.
  12. L. Liao, X. Wang, X. Luo, X. Wang, S. Gamboa, P.J. Sebastian, J. Power Sources, 2006, 160(1), 657-661.
  13. K. Yin, W. Fang, B. Zhong, X. Guo, Y. Tang, X. Nie, Electrochim. Acta, 2012, 85, 99-103.
  14. P. Strobel, B. Lambertandron, J. Solid State Chem, 1988, 75(1), 90-98.
  15. J. Breger, M. Jiang, N. Dupre, Y.S. Meng, Y. Shao-Horn, G. Ceder, C.P. Grey, J. Solid State Chem, 2005, 178(9), 2575-2585.
  16. K. Du, F. Yang, G.-R. Hu, Z.-D. Peng, Y.-B. Cao, K. S. Ryu, Journal of Power Sources, 2013, 244, 29-34.
  17. M. Thackeray, S. Kang, C. Johnson, J. Vaughey, R. Benedek, S. Hackney, J. Mater. Chem, 2007, 17(30), 3112-3125
  18. Z. Lu, J. Dahn, J. Electrochem. Soc, 2002, 149(11), A1454-A1459.
  19. S. Kang, V. Pol, I. Belharouak, M. Thackeray, J. Electrochem. Soc, 2010, 157(3), A267-A271.
  20. K. Kang, Y. S. Meng, J. Breger, C. P. Grey, G. Ceder, Science, 2006, 311(5763), 977-980.
  21. W. He, D. Yuan, J. Qian, X. Ai, H. Yang, Y. Cao, J. Mater. Chem A, 2013, 1(37), 11397-11403.
  22. E. Han, Q. Jing, L. Zhu, G. Zhang, S. Ma, J. Alloys compd, 2015, 618, 629-634.
  23. Z. H. Lu, J. R. Dahn, J. Electochem. Soc, 2001, 148(11), A1225-A1229.