DOI QR코드

DOI QR Code

Occurrence and removals of micropollutants in water environment

  • Kim, Moon-Kyung (Department of Environmental Health Sciences, School of Public Health, Seoul National University) ;
  • Zoh, Kyung-Duk (Department of Environmental Health Sciences, School of Public Health, Seoul National University)
  • Received : 2016.09.21
  • Accepted : 2016.11.28
  • Published : 2016.12.30

Abstract

Micropollutants are often discharged to surface waters through untreated wastewater from sewage treatment plants and wastewater treatment plants. The presence of micropollutants in surface waters is a serious concern because surface water is usually provided to water treatment plants (WTP) to produce drinking water. Many micropollutants can withstand conventional WTP systems and stay in tap water. In particular, pharmaceuticals and endocrine disruptors are examples of micropollutants that are detected at the drinking water, ppb, or even ppb level. A variety of techniques and processes, especially advanced oxidation processes, have been applied to remove micropollutants from water to control drinking water contamination. This paper reviews recent researches on the occurrence and removal of micropollutants in the aquatic environments and during water treatment processes.

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Lapworth DJ, Baran N, Stuart ME, Ward RS. Emerging organic contaminants in groundwater: A review of sources, fate and occurrence. Environ. Pollut. 2012;163:287-303. https://doi.org/10.1016/j.envpol.2011.12.034
  2. Verlicchi P, Al Aukidy M, Zambello E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. Sci. Total Environ. 2012;429:123-155. https://doi.org/10.1016/j.scitotenv.2012.04.028
  3. Thomas PM, Foster GD. Tracking acidic pharmaceuticals, caffeine, and triclosan through the wastewater treatment process. Environ. Toxicol. Chem. 2005;24:25-30. https://doi.org/10.1897/04-144R.1
  4. Poulsen PB, Jensen AA, Wallstrom E. More environmentally friendly alternatives to PFOS-compounds and PFOA. Environmental Project no.10132005. 2005.
  5. Prevedouros K, Cousins IT, Buck RC, Korzeniowski SH. Sources, fate and transport of perfluorocarboxylates. Environ. Sci. Technol. 2006;40:32-44. https://doi.org/10.1021/es0512475
  6. Sonnenschein C, Soto AM. An updated review of environmental estrogen and androgen mimics and antagonists. J. Steroid Biochem. Mol. Biol. 1998;65:143-150. https://doi.org/10.1016/S0960-0760(98)00027-2
  7. Ellis JB. Pharmaceutical and personal care products (PPCPs) in urban receiving waters. Environ. Pollut. 2006;144:184-189. https://doi.org/10.1016/j.envpol.2005.12.018
  8. Caliman FA, Gavrilescu M. Pharmaceuticals, personal care products and endocrine disrupting agents in the environment-A review. CLEAN-Soil, Air, Water 2009;37:277-303. https://doi.org/10.1002/clen.200900038
  9. Monteiro SC, Boxall ABA. Occurrence and fate of human pharmaceuticals in the environment. Rev. Environ. Contam. T. 2010;202:53-154.
  10. Zhou J, Zhang Z, Banks E, Grover D, Jiang JQ. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. J. Hazard. Mater. 2009;166: 655-661. https://doi.org/10.1016/j.jhazmat.2008.11.070
  11. Grujic S, Vasiljevic T, Lausevic M. Determination of multiple pharmaceutical classes in surface and ground waters by liquid chromatography-ion trap-tandem mass spectrometry. J. Chromatogr. A. 2009;1216:4989-5000. https://doi.org/10.1016/j.chroma.2009.04.059
  12. Choi K, Kim Y, Park J, et al. Seasonal variations of several pharmaceutical residues in surface water and sewage treatment plants of Han River, Korea. Sci. Total Environ. 2008;405:120-128. https://doi.org/10.1016/j.scitotenv.2008.06.038
  13. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States-I) Groundwater. Sci. Total Environ. 2008;402:192-200. https://doi.org/10.1016/j.scitotenv.2008.04.028
  14. Boyd GR, Reemtsma H, Grimm DA, Mitra S. Pharmaceuticals and personal care products (PPCPs) in surface and treated waters of Louisiana, USA and Ontario, Canada. Sci. Total Environ. 2003;311:135-149. https://doi.org/10.1016/S0048-9697(03)00138-4
  15. Snyder SA, Westerhoff P, Yoon Y, Sedlak DL. Pharmaceuticals, personal care products, and endocrine disruptors in water: implications for the water industry. Environ. Eng. Sci. 2003 ;20:449-469. https://doi.org/10.1089/109287503768335931
  16. Chen M, Ohman K, Metcalfe C, Ikonomou MG, Amatya PL, Wilson J. Pharmaceuticals and endocrine disruptors in wastewater treatment effluents and in the water supply system of Calgary, Alberta, Canada. Water Qual. Res. J. Can. 2006;41:351-364. https://doi.org/10.2166/wqrj.2006.039
  17. Kim SD, Cho J, Kim IS, Vanderford BJ, Snyder SA. Occurrence and removal of pharmaceuticals and endocrine disruptors in South Korean surface, drinking, and waste waters. Water Res. 2007;41:1013-1021. https://doi.org/10.1016/j.watres.2006.06.034
  18. Kumar A, Chang B, Xagoraraki I. Human health risk assessment of pharmaceuticals in water: issues and challenges ahead. Int. J. Environ. Res. Public Health. 2010;7:3929-3953. https://doi.org/10.3390/ijerph7113929
  19. Wille K, Noppe H, Verheyden K, et al. Validation and application of an LC-MS/MS method for the simultaneous quantification of 13 pharmaceuticals in seawater. Anal. Bioanal. Chem. 2010;397:1797-1808. https://doi.org/10.1007/s00216-010-3702-z
  20. Capdeville MJ, Budzinski H. Trace-level analysis of organic contaminants in drinking waters and groundwaters. TrAC-Trend. Anal. Chem. 2011;30:586-606.
  21. Stackelberg PE, Furlong ET, Meyer MT, Zaugg SD, Henderson AK, Reissman DB. Persistence of pharmaceutical compounds and other organic wastewater contaminants in a conventional drinking-water-treatment plant. Sci. Total Environ. 2004;329: 99-113. https://doi.org/10.1016/j.scitotenv.2004.03.015
  22. Kim SC, Carlson K. Quantification of human and veterinary antibiotics in water and sediment using SPE/LC/MS/MS. Anal. Bioanal. Chem. 2007;387:1301-1315. https://doi.org/10.1007/s00216-006-0613-0
  23. Huerta-Fontela M, Galceran MT, Ventura F. Occurrence and removal of pharmaceuticals and hormones through drinking water treatment. Water Res. 2011;45:1432-1442. https://doi.org/10.1016/j.watres.2010.10.036
  24. EU, 2008. European Union. Water framework directive 2008/105/EC. European parliament and of the council. [cited 20 August 2016]. Available from: http://eur-lex.europa.eu/ legal-content/EN/TXT/?uri=CELEX:32008L0105.
  25. Canadian Environmental Protection Act, 1999. [cited 20 August 2016]. Available from: http://www.hc-sc.gc.ca/ewh-semt/pubs/contaminants/psl2-lsp2/nonylphenol/index-eng.php.
  26. Deblonde T, Cossu-Leguille C, Hartemann P. Emerging pollutants in wastewater: A review of the literature. Int. J. Hyg. Environ. Health. 2011;214:442-448. https://doi.org/10.1016/j.ijheh.2011.08.002
  27. Clara M, Strenn B, Gans O, Martinez E, Kreuzinger N, Kroiss H. Removal of selected pharmaceuticals, fragrances an endocrine disrupting compounds in a membrane bioreactor and conventional wastewater treatment plants. Water Res. 2005;39: 4797-4807. https://doi.org/10.1016/j.watres.2005.09.015
  28. International Environment Forum: Micropollutants. [cited 20 August 2016]. Available from: http://iefworld.org/fr/spmicropollutant.htm.
  29. Metz DH, Meyer M, Dotson A, Beerendonk E, Dionysiou DD. The effect of UV/$H_2O_2$ treatment on disinfection by-product formation potential under simulated distribution system conditions. Water Res. 2011;45:3969-3980. https://doi.org/10.1016/j.watres.2011.05.001
  30. Shah AD, Krasner SW, Lee CFT, von Gunten U, Mitch WA. Trade-offs in disinfection byproduct formation associated with precursor preoxidation for control of N-nitrosodimethylamine formation. Environ. Sci. Technol. 2012;46:4809-4818. https://doi.org/10.1021/es204717j
  31. Chu W, Gao N, Yin D, Krasner SW, Mitch WA. Impact of UV/$H_2O_2$ pre-oxidation on the formation of haloacetamids and other nitrogenous disinfection byproducts during chlorination. Environ. Sci. Technol. 2014;48:12190-12198. https://doi.org/10.1021/es502115x
  32. Bila D, Montalvao AF, Azevedo DA, Dezotti M. Estrogenic activity removal of 17$\beta$-estradiol by ozonation and identification of by-products. Chemosphere 2007;69:736-714. https://doi.org/10.1016/j.chemosphere.2007.05.016
  33. Maniero MG, Bila DM, Dezotti M. Degradation and estrogenic activity removal of 17$\beta$-estradiol and 17$\alpha$-ethinylestradiol by ozonation and $O_3/H_2O_2$. Sci. Total. Environ. 2008;407:105-115. https://doi.org/10.1016/j.scitotenv.2008.08.011
  34. Sun Q, Deng S, Huang J, Yu G. Relationship between oxidation products and estrogenic activity during ozonation of 4-nonylphenol. Ozone Sci. Eng. 2008;30:120-126. https://doi.org/10.1080/01919510701861276
  35. Altmann J, Ruhl AS, Zietzschmann F, Jekel M. Direct comparison of ozonation and adsorption onto powdered activated carbon for micropollutant removal in advanced wastewater treatment. Water Res. 2014;55:185-193. https://doi.org/10.1016/j.watres.2014.02.025
  36. Lee Y, von Gunten U. Oxidative transformation of micropollutants during municipal wastewater treatment: comparison of kinetic aspects of selective (chlorine, chlorine dioxide, ferrate(VI), and ozone) and non-selective oxidants (hydroxyl radical). Water Res. 2010;44:555-566. https://doi.org/10.1016/j.watres.2009.11.045
  37. Wert EC, Rosario-Ortiz FL, Drury DD, Snyder SA. Formation of oxidation byproducts from ozonation of wastewater. Water Res. 2007;41:1481-1490. https://doi.org/10.1016/j.watres.2007.01.020
  38. Wert EC, Rosario-Ortiz FL, Snyder SA. Effect of ozone exposure on the oxidation of trace organic contaminants in wastewater. Water Res. 2009;43:1005-1014. https://doi.org/10.1016/j.watres.2008.11.050
  39. Pereira RO, de Alda ML, Joglar J, Daniel LA, Bardelo D. Identification of new ozonation disinfection byproducts of 17$\beta$-estradiol and estrone in water. Chemosphere 2011;84: 1535-1541. https://doi.org/10.1016/j.chemosphere.2011.05.058
  40. Richardson SD, Thruston Jr AD, Caughran TV, Chen PH, Collette TW, Floyd TL. Identification of new ozone disinfection byproducts in drinking water. Environ. Sci. Technol. 1999;33:3368-3377. https://doi.org/10.1021/es981218c
  41. Schmidt CK, Brauch HJ. N,N-Dimethylsulfamide as precursor for N-Nitrosodimethylamine (NDMA) formation upon ozonation and its fate during drinking water treatment. Environ. Sci. Technol. 2008;42:6340-6346. https://doi.org/10.1021/es7030467
  42. Zhao YY, Boyd JM, Woodbeck M, et al. Formation of N-nitrosamines from eleven disinfection treatments of seven different surface waters. Environ. Sci. Technol. 2008;42:4857-4862. https://doi.org/10.1021/es7031423
  43. Sarathy SR, Mohseni M. The impact of UV/$H_2O_2$ advanced oxidation on molecular size distribution of chromophoric natural organic matter. Environ. Sci. Technol. 2007;41:8315-8320. https://doi.org/10.1021/es071602m
  44. Jo CH, Dietrich AM, Tanko JM. Simultaneous degradation of disinfection byproducts and earthy-musty odorants by the UV/$H_2O_2$ advanced oxidation process. Water Res. 2011;45: 2507-2516. https://doi.org/10.1016/j.watres.2011.02.006
  45. Bazri MM, Barbeau B, Mohseni M. Impact of UV/$H_2O_2$ advanced oxidation treatment on molecular weight distribution of NOM and biostability of water. Water Res. 2012;46:5297-5304. https://doi.org/10.1016/j.watres.2012.07.017
  46. Dotson AD, Keen VS, Metz D, Linden KG. UV/$H_2O_2$ treatment of drinking water increases post-chlorination DBP formation. Water Res. 2010;44:3703-3713. https://doi.org/10.1016/j.watres.2010.04.006
  47. Kosjek T, Heath E. Applications of mass spectrometry to identifying pharmaceutical transformation products in water treatment. TrAC-Trend. Anal. Chem. 2008;27:807-820. https://doi.org/10.1016/j.trac.2008.08.014
  48. American Chemistry Council, 2008. The benefits of chlorine chemistry in water treatment. https://yosemite.epa.gov/sab%5CSABPRODUCT.nsf/EC591C83E0AE1B5A852579670071541A/$File/ATT4WSEA.pdf.
  49. Pinkston KE, Sedlak DL. Transformation of aromatic ether-and amine containing pharmaceuticals during chlorine disinfection. Environ. Sci. Technol. 2004;38:4019-4025. https://doi.org/10.1021/es035368l
  50. Sim WJ, Lee JW, Oh JE. Occurrence and fate of pharmaceuticals in wastewater treatment plants and rivers in Korea. Environ. Pollut. 2010;158:1938-1947. https://doi.org/10.1016/j.envpol.2009.10.036
  51. Christman RF, Norwood DL, Millington DS, Johnson JD, Stevens AA. Identity and yields of major halogenated products of aquatic fulvic acid chlorination. Environ. Sci. Technol. 1983;17:625-628. https://doi.org/10.1021/es00116a012
  52. Oliver BG. Dihaloacetonitriles in drinking water: Algae and fulvic acid as precursors. Environ. Sci. Technol. 1983;17:80-83. https://doi.org/10.1021/es00108a003
  53. von Gunten U. Ozonation of drinking water: Part I. Oxidation kinetics and product formation. Water Res. 2003;37:1443-1467 https://doi.org/10.1016/S0043-1354(02)00457-8
  54. von Gunten U. Ozonation of drinking water: Part II. Disinfection and by-product formation in presence of bromide, iodide or chlorine. Water Res. 2003;37:1469-1487. https://doi.org/10.1016/S0043-1354(02)00458-X
  55. Sojic D, Despotovic V, Orcic D, et al. Degradation of thiamethoxam and metoprolol by UV, O$_3$, and UV/O$_3$ hybrid processes: Kinetics, degradation intermediates and toxicity. J. Hydrol. 2012;472-473:314-327. https://doi.org/10.1016/j.jhydrol.2012.09.038
  56. Rivas F, Gimeno O, Borralho T, Carbajo M. UV-C radiation based methods for aqueous metoprolol elimination. J. Hazard. Mater. 2010;179:357-362. https://doi.org/10.1016/j.jhazmat.2010.03.013
  57. Jin J, El-Din MG, Bolton JR. Assessment of the UV/Chlorine process as an advanced oxidation process. Water Res. 2011;45:1890-1896. https://doi.org/10.1016/j.watres.2010.12.008
  58. Nam SW, Yoon Y, Choi DJ, Zoh KD. Degradation characteristics of metoprolol during UV/chlorination reaction and a factorial design optimization. J. Hazard. Mater. 2015;285:453-463. https://doi.org/10.1016/j.jhazmat.2014.11.052
  59. Vilve M, Hirvonen A, Sillanpaa M. Ozone-based advanced oxidation processes in nuclear laundry water treatment. Environ. Technol. 2007;28:961-968. https://doi.org/10.1080/09593332808618863
  60. Sui Q, Huang J, Deng S, Yu G, Fan Q. Occurrence and removal of pharmaceuticals, caffeine and DEET in wastewater treatment plants of Beijing, China. Water Res. 2010;44:417-426. https://doi.org/10.1016/j.watres.2009.07.010
  61. Gerrity D, Gamage S, Holady JC, et al. Pilot-scale evaluation of ozone and biological activated carbon for trace organic contaminant mitigation and disinfection. Water Res. 2011;45: 2155-2165. https://doi.org/10.1016/j.watres.2010.12.031
  62. Kim JW, Jang HS, Kim JG, et al. Occurrence of pharmaceutical and personal care products (PPCPs) in surface water from Mankyung River, South Korea. J. Health Sci. 2009;55:249-258. https://doi.org/10.1248/jhs.55.249
  63. Huber MM, Ternes TA, von Gunten U. Removal of estrogenic activity and formation of oxidation products during ozonation of 17$\alpha$-ethinylestradiol. Environ. Sci. Technol. 2004;38:5177-5186. https://doi.org/10.1021/es035205x
  64. Luo Y, Guo W, Ngo HH, et al. A review on the occurrence of micropollutants in the aquatic environment and their fate and removal during wastewater treatment. Sci. Total Environ. 2014;473-474:619-641. https://doi.org/10.1016/j.scitotenv.2013.12.065
  65. Thuy PT, Moons K, Van Dijk J, Viet Anh N, Van der Bruggen B. To what extent are pesticides removed from surface water during coagulation-flocculation? Water Environ. J. 2008;22: 217-223. https://doi.org/10.1111/j.1747-6593.2008.00128.x
  66. Adams C, Wang Y, Loftin K, Meyer M. Removal of antibiotics from surface and distilled water in conventional water treatment processes. J. Environ. Eng. 2002;128:253-260. https://doi.org/10.1061/(ASCE)0733-9372(2002)128:3(253)
  67. Stumm W, Morgan JJ, Drever JI. Aquatic Chemistry: Chemical equilibria and rates in natural waters. 3rd ed. New York: Wiley Interscience; 1996. p. 519-521.
  68. Kovalova L, Siegrist H, von Gunten U, Eugster J, Hagenbuch M, Wittmer A. Elimination of micropollutants during post-treatment of hospital wastewater with powdered activated carbon, ozone, and UV. Environ. Sci. Technol. 2013;47: 7899-7908. https://doi.org/10.1021/es400708w
  69. Hernandez-Leal L, Temmink H, Zeeman G, Buisman C. Removal of micropollutants from aerobically treated grey water via ozone and activated carbon. Water Res. 2011;45: 2887-2896. https://doi.org/10.1016/j.watres.2011.03.009
  70. Snyder SA, Adham S, Redding AM, et al. Role of membranes and activated carbon in the removal of endocrine disruptors and pharmaceuticals. Desalination 2007;202:156-181. https://doi.org/10.1016/j.desal.2005.12.052
  71. Grover D, Zhou J, Frickers P, Readman J. Improved removal of estrogenic and pharmaceutical compounds in sewage effluent by full scale granular activated carbon: Impact on receiving river water. J. Hazard. Mater. 2011;185:1005-1011. https://doi.org/10.1016/j.jhazmat.2010.10.005
  72. Yang X, Flowers RC, Weinberg HS, Singer PC. Occurrence and removal of pharmaceuticals and personal care products (PPCPs) in an advanced wastewater reclamation plant. Water Res. 2011;45:5218-5228. https://doi.org/10.1016/j.watres.2011.07.026
  73. Rossner A, Snyder SA, Knappe DR. Removal of emerging contaminants of concern by alternative adsorbents. Water Res. 2009;43:3787-3796. https://doi.org/10.1016/j.watres.2009.06.009
  74. Bolong N, Ismail AF, Salim MR, Matsuura T. A review of the effects of emerging contaminants in wastewater and options for their removal. Desalination 2009;239:229-246. https://doi.org/10.1016/j.desal.2008.03.020
  75. Korich D, Mead J, Madore M, Sinclair N, Sterling CR. Effects of ozone, chlorine dioxide, chlorine, and monochloramine on Cryptosporidium parvum oocyst viability. Appl. Environ. Microbiol. 1990;56:1423-1428.
  76. Asano T, Levine AD. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996;33:1-14.
  77. Richardson SD. Disinfection by-products and other emerging contaminants in drinking water. TrAC-Trend. Anal. Chem. 2003;22:666-684. https://doi.org/10.1016/S0165-9936(03)01003-3
  78. Gallard H, von Gunten U. Chlorination of phenols: Kinetics and formation of chloroform. Environ. Sci. Technol. 2002;36: 884-890. https://doi.org/10.1021/es010076a
  79. Westerhoff P, Yoon Y, Snyder S, Wert E. Fate of endocrine-disruptor, pharmaceutical, and personal care product chemicals during simulated drinking water treatment processes. Environ. Sci. Technol. 2005;39:6649-6663. https://doi.org/10.1021/es0484799
  80. Rodriguez-Mozaz S, Lopez de Alda MJ, Barcelo D. Monitoring of estrogens, pesticides and bisphenol A in natural waters and drinking water treatment plants by solid-phase extraction-liquid chromatography-mass spectrometry. J. Chromatogr. A. 2004;1045:85-92. https://doi.org/10.1016/j.chroma.2004.06.040
  81. Stackelberg PE, Gibs J, Furlong ET, Meyer MT, Zaugg SD, Lippincott RL. Efficiency of conventional drinking-water-treatment processes in removal of pharmaceuticals and other organic compounds. Sci. Total Environ. 2007;377:255-272. https://doi.org/10.1016/j.scitotenv.2007.01.095
  82. Boleda MR, Galceran MT, Ventura F. Behavior of pharmaceuticals and drugs of abuse in a drinking water treatment plant (DWTP) using combined conventional and ultrafiltration and reverse osmosis (UF/RO) treatments. Environ. Pollut. 2011;159:1584-1591. https://doi.org/10.1016/j.envpol.2011.02.051
  83. Vieno NM, Harkki H, Tuhkanen T, Kronberg L. Occurrence of pharmaceuticals in river water and their elimination in a pilot-scale drinking water treatment plant. Environ. Sci. Technol. 2007;41:5077-5084. https://doi.org/10.1021/es062720x
  84. Gregory J, Duan J. Hydrolyzing metal salts as coagulants. Pure Appl. Chem. 2001;73:2017-2026. https://doi.org/10.1351/pac200173122017
  85. Duan J, Gregory J. Coagulation by hydrolysing metal salts. Adv. Colloid Interface Sci. 2003;100-102:475-502. https://doi.org/10.1016/S0001-8686(02)00067-2
  86. Matilainen A, Vepsalainen M, Sillanpaa M. Natural organic matter removal by coagulation during drinking water treatment: A review. Adv. Colloid Interface Sci. 2010;159:189-197. https://doi.org/10.1016/j.cis.2010.06.007
  87. Nam SW, Choi DJ, Kim SK, Her N, Zoh KD. Adsorption characteristics of selected hydrophilic and hydrophobic micropollutants in water using activated carbon. J. Hazard. Mater. 2014;270:144-152. https://doi.org/10.1016/j.jhazmat.2014.01.037
  88. Ozacar M, Sengil IA. Evaluation of tannin biopolymer as a coagulant aid for coagulation of colloidal particles. Colloid. Surface. A. 2003;229:85-96. https://doi.org/10.1016/j.colsurfa.2003.07.006
  89. Wang JP, Chen YZ, Ge XW, Yu HQ. Optimization of coagulation/flocculation process for a paper-recycling wastewater treatment using response surface methodology. Colloid. Surface. A. 2007;302:204-210. https://doi.org/10.1016/j.colsurfa.2007.02.023
  90. Ye C, Wang D, Shi B, Yu J, Qu J, Edwards M, Tang H. Alkalinity effect of coagulation with polyaluminum chlorides: Role of electrostatic patch. Colloid. Surface. A. 2007;294:163-173. https://doi.org/10.1016/j.colsurfa.2006.08.005
  91. Matamoros V, Salvado V. Evaluation of a coagulation/flocculation-lamellar clarifier and filtration-UV-chlorination reactor for removing emerging contaminants at full-scale wastewater treatment plants in Spain. J. Environ. Manage. 2013;117:96-102. https://doi.org/10.1016/j.jenvman.2012.12.021
  92. Suarez S, Lema JM, Omil F. Pre-treatment of hospital wastewater by coagulation-flocculation and flotation. Bioresour. Technol. 2009;100:2138-2146. https://doi.org/10.1016/j.biortech.2008.11.015
  93. Asakura H, Matsuto T. Experimental study of behavior of endocrine-disrupting chemicals in leachate treatment process and evaluation of removal efficiency. Waste Manage. 2009;29:1852-1859. https://doi.org/10.1016/j.wasman.2008.11.030
  94. Choi KJ, Kim SG, Kim SH. Removal of antibiotics by coagulation and granular activated carbon filtration. J. Hazard. Mater. 2008;151:38-43. https://doi.org/10.1016/j.jhazmat.2007.05.059
  95. Kuster M, Lopez de Alda MJ, Hernando MD, Petrovic M, Martin-Alonso J, Barcelo D. Analysis and occurrence of pharmaceuticals, estrogens, progestogens and polar pesticides in sewage treatment plant effluents, river water and drinking water in the Llobregat river basin (Barcelona, Spain). J. Hydrol. 2008;358;112-123. https://doi.org/10.1016/j.jhydrol.2008.05.030
  96. Kumar KS, Priya SM, Peck AM, Sajwan KS. Mass loadings of triclosan and triclocarbon from four wastewater treatment plants to three rivers and landfill in Savannah, Georgia, USA. Arch. Environ. Contam. Toxicol. 2010;58:275-285. https://doi.org/10.1007/s00244-009-9383-y
  97. Young TA, Heidler J, Matos-Pérez CR, et al. Ab initio and in situ comparison of caffeine, triclosan, and triclocarban as indicators of sewage-derived microbes in surface waters. Environ. Sci. Technol. 2008;42:3335-3340. https://doi.org/10.1021/es702591r
  98. Li D, Kim M, Shim WJ, Yim UH, Oh JR, Kwon YJ. Seasonal flux of nonylphenol in Han River, Korea. Chemosphere 2004;56:1-6. https://doi.org/10.1016/j.chemosphere.2004.01.034
  99. Wu Z, Zhang Z, Chen S, He F, Fu G, Liang W. Nonylphenol and octylphenol in urban eutrophic lakes of the subtropical China. Fresen. Environ. Bull. 2007;16:227-234.
  100. Heberer T, Schmidt-Baumler K, Stan H. Occurrence and distribution of organic contaminants in the aquatic system in Berlin. Part I: Drug residues and other polar contaminants in Berlin surface and groundwater. Acta Hydroch. Hydrob. 1998;26:272-278. https://doi.org/10.1002/(SICI)1521-401X(199809)26:5<272::AID-AHEH272>3.0.CO;2-O
  101. Collier AC. Pharmaceutical contaminants in potable water: potential concerns for pregnant women and children. EcoHealth 2007;4:164-171. https://doi.org/10.1007/s10393-007-0105-5
  102. Schriks M, Heringa MB, van der Kooi MM, de Voogt P, van Wezel AP. Toxicological relevance of emerging contaminants for drinking water quality. Water Res. 2010;44:461-476. https://doi.org/10.1016/j.watres.2009.08.023
  103. WHO. World Health Organization. Guidelines for drinking-water quality. 4th ed. 2011.
  104. USEPA. United States Environmental Protection Agency. National primary drinking water regulations-maximum contaminant levels. 2011.
  105. Health Canada. Guidelines for Canadian drinking water quality-summary table. Water, air and climate change bureau, healthy environments and consumer safety branch, Ottawa, Ontario. 2012.
  106. NJMRC. National health and medical research council. Australian drinking water guidelines. 2011.
  107. EU. European Union. Water framework directive 2008/105/EC. European parliament and of the council. 2008.
  108. SCHER. Scientific Committee on Health and Environmental Risks. Chemicals and the water framework directive: draft environmental quality standards-diclofenac, ethinylestradiol, 17$\beta$-estradiol. 2011.
  109. Gibs J, Stackelberg PE, Furlong ET, Meyer M, Zaugg SD, Lippincott RL. Persistence of pharmaceuticals and other organic compounds in chlorinated drinking water as a function of time. Sci. Total Environ. 2007;373:240-249. https://doi.org/10.1016/j.scitotenv.2006.11.003
  110. Nam SW, Jo BI, Yoon Y, Zoh KD. Occurrence and removal of selected micropollutants in a water treatment plant. Chemosphere 2014;95:156-165. https://doi.org/10.1016/j.chemosphere.2013.08.055
  111. Hernando MD, Heath E, Petrovic M, Barcelo D. Trace-level determination of pharmaceutical residues by LC-MS/MS in natural and treated waters. A pilot-survey study. Anal. Bioanal. Chem. 2006;385:985-991. https://doi.org/10.1007/s00216-006-0394-5
  112. Kolpin DW, Furlong ET, Meyer MT, et al. Pharmaceuticals, hormones, and other organic wastewater contaminants in US streams, 1999-2000: A national reconnaissance. Environ. Sci. Technol. 2002;36:1202-1211. https://doi.org/10.1021/es011055j
  113. Brown KD, Kulis J, Thomson B, Chapman TH, Mawhinney DB. Occurrence of antibiotics in hospital, residential, and dairy effluent, municipal wastewater, and the Rio Grande in New Mexico. Sci. Total Environ. 2006;366:772-783. https://doi.org/10.1016/j.scitotenv.2005.10.007
  114. Barnes KK, Kolpin DW, Furlong ET, Zaugg SD, Meyer MT, Barber LB. A national reconnaissance of pharmaceuticals and other organic wastewater contaminants in the United States-I) Groundwater. Sci. Total Environ. 2008;402:192-200. https://doi.org/10.1016/j.scitotenv.2008.04.028
  115. Yu Y, Huang Q, Wang Z, Zhang K, Tang C, Cui J, Feng J, Peng X. Occurrence and behavior of pharmaceuticals, steroid hormones, and endocrine-disrupting personal care products in wastewater and the recipient river water of the Pearl River Delta, South China. J. Environ. Monit. 2011;13:871-878. https://doi.org/10.1039/c0em00602e
  116. Behera SK, Kim HW, Oh JE, Park HS. Occurrence and removal of antibiotics, hormones and several other pharmaceuticals in wastewater treatment plants of the largest industrial city of Korea. Sci. Total Environ. 2011;409:4351-4360. https://doi.org/10.1016/j.scitotenv.2011.07.015
  117. Klecka GM, Staples CA, Clark KE, van der Hoeven N, Thomas DE, Hentges SG. Exposure analysis of bisphenol A in surface water systems in North America and Europe. Environ. Sci. Technol. 2009;43:6145-6150. https://doi.org/10.1021/es900598e
  118. Yoon Y, Ryu J, Oh J, Choi BG, Snyder SA. Occurrence of endocrine disrupting compounds, pharmaceuticals, and personal care products in the Han River (Seoul, South Korea). Sci. Total Environ. 2010;408:636-643. https://doi.org/10.1016/j.scitotenv.2009.10.049
  119. Loos R, Locoro G, Comero S, et al. Pan-European survey on the occurrence of selected polar organic persistent pollutants in ground water. Water Res. 2010;44:4115-4126. https://doi.org/10.1016/j.watres.2010.05.032
  120. Morasch B, Bonvin F, Reiser H, et al. Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: Micropollutant removal between wastewater and raw drinking water. Environ. Toxicol. Chem. 2010;29:1658-1668.
  121. Kock-Schulmeyer M, Villagrasa M, Lopez de Alda M, Cespedes-Sanchez R, Ventura F, Barcelo D. Occurrence and behavior of pesticides in wastewater treatment plants and their environmental impact. Sci. Total Environ. 2013;458:466-476.
  122. Hernando M, Mezcua M, Gomez M, Malato O, Aguera A, Fernandez-Alba A. Comparative study of analytical methods involving gas chromatography-mass spectrometry after derivatization and gas chromatography-tandem mass spectrometry for the determination of selected endocrine disrupting compounds in wastewaters. J. Chromatogr. A. 2004;1047:129-135. https://doi.org/10.1016/j.chroma.2004.06.123
  123. Gomez MJ, Lacorte S, Fernandez-Alba A, Aguera A. Pilot survey monitoring pharmaceuticals and related compounds in a sewage treatment plant located on the Mediterranean coast. Chemosphere 2007;66:993-1002. https://doi.org/10.1016/j.chemosphere.2006.07.051
  124. Lin AYC, Tsai YT. Occurrence of pharmaceuticals in Taiwan's surface waters: Impact of waste streams from hospitals and pharmaceutical production facilities. Sci. Total Environ. 2009;407:3793-3802. https://doi.org/10.1016/j.scitotenv.2009.03.009
  125. Loos R, Locoro G, Contini S. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS$^2$ analysis. Water Res. 2010;44:2325-2335. https://doi.org/10.1016/j.watres.2009.12.035
  126. Matamoros V, Arias CA, Nguyen LX, Salvadó V, Brix H. Occurrence and behavior of emerging contaminants in surface water and a restored wetland. Chemosphere 2012;88:1083-1089. https://doi.org/10.1016/j.chemosphere.2012.04.048
  127. Yang X, Chen F, Meng F, et al. Occurrence and fate of PPCPs and correlations with water quality parameters in urban riverine waters of the Pearl River Delta, South China. Environ. Sci. Pollut. Res. 2013:1-12.
  128. Fram MS, Belitz K. Occurrence and concentrations of pharmaceutical compounds in groundwater used for public drinking-water supply in California. Sci. Total Environ. 2011;409: 3409-3417. https://doi.org/10.1016/j.scitotenv.2011.05.053
  129. Kosma CI, Lambropoulou DA, Albanis TA. Occurrence and removal of PPCPs in municipal and hospital wastewaters in Greece. J. Hazard. Mater. 2010;179:804-817. https://doi.org/10.1016/j.jhazmat.2010.03.075
  130. Conkle JL, White JR, Metcalfe CD. Reduction of pharmaceutically active compounds by a lagoon wetland wastewater treatment system in Southeast Louisiana. Chemosphere 2008;73: 1741-1748. https://doi.org/10.1016/j.chemosphere.2008.09.020
  131. Park J. An approach for developing aquatic environmental risk assessment framework for pharmaceuticals in Korea. Korea Environment Institute. 2006.
  132. Kim I, Tanaka H. Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 2009;35:793-802. https://doi.org/10.1016/j.envint.2009.01.003
  133. Benotti MJ, Trenholm RA, Vanderford BJ, Holady JC, Stanford BD, Snyder SA. Pharmaceuticals and endocrine disrupting compounds in US drinking water. Environ. Sci. Technol. 2009;43:597-603. https://doi.org/10.1021/es801845a
  134. Bendz D, Paxeus NA, Ginn TR, Loge FJ. Occurrence and fate of pharmaceutically active compounds in the environment, a case study: Höje River in Sweden. J. Hazard. Mater. 2005; 122:195-204. https://doi.org/10.1016/j.jhazmat.2005.03.012
  135. Nakada N, Tanishima T, Shinohara H, Kiri K, Takada H. Pharmaceutical chemicals and endocrine disrupters in municipal wastewater in Tokyo and their removal during activated sludge treatment. Water Res. 2006;40:3297-3303. https://doi.org/10.1016/j.watres.2006.06.039
  136. Zhao JL, Ying GG, Wang L, et al. Determination of phenolic endocrine disrupting chemicals and acidic pharmaceuticals in surface water of the Pearl Rivers in South China by gas chromatography-negative chemical ionization-mass spectrometry. Sci. Total Environ. 2009;407:962-974. https://doi.org/10.1016/j.scitotenv.2008.09.048
  137. Hilton MJ, Thomas KV. Determination of selected human pharmaceutical compounds in effluent and surface water samples by high-performance liquid chromatography-electrospray tandem mass spectrometry. J. Chromatogr. A. 2003;1015:129-141. https://doi.org/10.1016/S0021-9673(03)01213-5

Cited by

  1. Surface modified nanostructured-TiO2 thin films for removal of Congo red vol.35, pp.10, 2018, https://doi.org/10.1007/s11814-018-0114-9
  2. Toxicological analysis of water mixtures of organic micropollutants subjected to UV irradiation vol.44, pp.2267-1242, 2018, https://doi.org/10.1051/e3sconf/20184400084