Tazarotene-Induced Gene 1 Enhanced Cervical Cell Autophagy through Transmembrane Protein 192

  • Shyu, Rong-Yaun (Department of Internal Medicine, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Wang, Chun-Hua (Department of Dermatology, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Wu, Chang-Chieh (Department of Surgery, Tri-Service General Hospital, National Defense Medical Center) ;
  • Chen, Mao-Liang (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Lee, Ming-Cheng (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Wang, Lu-Kai (Radiation Biology Core Laboratory, Institute for Radiological Research, Chang Gung University/Chang Gung Memorial Hospital) ;
  • Jiang, Shun-Yuan (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation) ;
  • Tsai, Fu-Ming (Department of Research, Taipei Tzuchi Hospital, The Buddhist Tzuchi Medical Foundation)
  • Received : 2016.06.28
  • Accepted : 2016.11.18
  • Published : 2016.12.31


Tazarotene-induced gene 1 (TIG1) is a retinoic acid-inducible protein that is considered a putative tumor suppressor. The expression of TIG1 is decreased in malignant prostate carcinoma or poorly differentiated colorectal adenocarcinoma, but TIG1 is present in benign or well-differentiated tumors. Ectopic TIG1 expression led to suppression of growth in cancer cells. However, the function of TIG1 in cell differentiation is still unknown. Using a yeast two-hybrid system, we found that transmembrane protein 192 (TMEM192) interacted with TIG1. We also found that both TIG1A and TIG1B isoforms interacted and co-localized with TMEM192 in HtTA cervical cancer cells. The expression of TIG1 induced the expression of autophagy-related proteins, including Beclin-1 and LC-3B. The silencing of TMEM192 reduced the TIG1-mediated upregulation of autophagic activity. Furthermore, silencing of either TIG1 or TMEM192 led to alleviation of the upregulation of autophagy induced by all-trans retinoic acid. Our results demonstrate that the expression of TIG1 leads to cell autophagy through TMEM192. Our study also suggests that TIG1 and TMEM192 play an important role in the all-trans retinoic acid-mediated upregulation of autophagic activity.


all-trans retinoic acid;autophagy;Beclin-1;LC3B;tazarotene-induced gene 1;transmembrane protein 192


Supported by : Buddhist Tzuchi Medical Foundation


  1. Aagaard, A., Listwan, P., Cowieson, N., Huber, T., Ravasi, T., Wells, C.A., Flanagan, J.U., Kellie, S., Hume, D.A., Kobe, B., et al. (2005). An inflammatory role for the mammalian carboxypeptidase inhibitor latexin: relationship to cystatins and the tumor suppressor TIG1. Structure 13, 309-317.
  2. Aita, V.M., Liang, X.H., Murty, V.V., Pincus, D.L., Yu, W., Cayanis, E., Kalachikov, S., Gilliam, T.C., and Levine, B. (1999). Cloning and genomic organization of beclin 1, a candidate tumor suppressor gene on chromosome 17q21. Genomics 59, 59-65.
  3. Anguiano, J., Garner, T.P., Mahalingam, M., Das, B.C., Gavathiotis, E., and Cuervo, A.M. (2013). Chemical modulation of chaperonemediated autophagy by retinoic acid derivatives. Nat. Chem. Biol. 9, 374-382.
  4. Bernard, M., Dieude, M., Yang, B., Hamelin, K., Underwood, K., and Hebert, M.J. (2014). Autophagy fosters myofibroblast differentiation through MTORC2 activation and downstream upregulation of CTGF. Autophagy 10, 2193-2207.
  5. Chen, X.H., Wu, W.G., and Ding, J. (2014). Aberrant TIG1 methylation associated with its decreased expression and clinicopathological significance in hepatocellular carcinoma. Tumour Biol. 35, 967-971.
  6. Choi. A.M., Ryter, S.W., and Levine, B. (2013). Autophagy in human health and disease. N. Engl. J. Med. 368, 651-662.
  7. Dooley, H.C., Razi, M., Polson, H.E., Girardin, S.E., Wilson, M.I., and Tooze, S.A. (2014). WIPI2 links LC3 conjugation with PI3P, autophagosome formation, and pathogen clearance by recruiting Atg12-5-16L1. Mol. Cell 55, 238-252.
  8. Guo, J.Y., Chen, H.Y., Mathew, R., Fan, J., Strohecker, A.M., Karsli-Uzunbas, G., Kamphorst. J.J., Chen, G., Lemons, J.M., Karantza, V., et al. (2011). Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 25, 460-470.
  9. Hanada. T., Noda, N.N., Satomi, Y., Ichimura, Y., Fujioka, Y., Takao, T., Inagaki, F., and Ohsumi, Y. (2007). The Atg12-Atg5 conjugate has a novel E3-like activity for protein lipidation in autophagy. J. Biol. Chem. 282, 37298-37302.
  10. Hara, T., Takamura, A., Kishi, C., Iemura, S., Natsume, T., Guan, J.L., and Mizushima, N. (2008). FIP200, a ULK-interacting protein, is required for autophagosome formation in mammalian cells. J. Cell Biol. 181, 497-510.
  11. Jing, C., El-Ghany, M.A., Beesley, C., Foster, C.S., Rudland, P.S., Smith, P., and Ke, Y. (2002). Tazarotene-induced gene 1 (TIG1) expression in prostate carcinomas and its relationship to tumorigenicity. J. Natl. Cancer Inst. 94, 482-490.
  12. Kadowaki, M., and Karim, M.R. (2009). Cytosolic LC3 ratio as a quantitative index of macroautophagy. Methods Enzymol. 452, 199-213.
  13. Kang, R., Zeh, H.J., Lotze, M.T., and Tang, D. (2011). The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571-580.
  14. Kobayashi, S. (2015). Choose delicately and reuse adequately: the newly revealed process of autophagy. Biol. Pharm. Bull. 38, 1098-1103.
  15. Kwok, W.K., Pang, J.C., Lo, K.W., and Ng, H.K. (2009). Role of the RARRES1 gene in nasopharyngeal carcinoma. Cancer Genet. Cytogenet. 194, 58-64.
  16. Kwong. J., Lo, K.W., Chow, L.S., Chan, F.L., To, K.F., and Huang, D.P. (2005). Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int. J. Cancer 113, 386-392.
  17. Lamb, C.A., Yoshimori, T., and Tooze, S.A. (2013). The autophagosome: origins unknown, biogenesis complex. Nat. Rev. Mol. Cell Biol. 14, 759-774.
  18. Lee, I.H., Cao, L., Mostoslavsky, R., Lombard, D.B., Liu, J., Bruns, N.E., Tsokos, M., Alt, F.W., and Finkel, T. (2008). A role for the NAD-dependent deacetylase Sirt1 in the regulation of autophagy. Proc. Natl. Acad. Sci. USA 105, 3374-3379.
  19. Lee, J., Giordano, S., and Zhang, J. (2012). Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem. J. 441, 523-540.
  20. Liang, X.H., Jackson, S., Seaman, M., Brown, K., Kempkes, B., Hibshoosh, H., and Levine, B. (1999). Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature 402, 672-676.
  21. Liang, Y., Jansen, M., Aronow, B., Geiger, H., and Van Zant, G. (2007). The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nat. Genet. 39, 178-188.
  22. Liu, Z., Lv, Y.J., Song, Y.P., Li, X.H., Du, Y.N., Wang, C.H., and Hu, L.K. (2012). Lysosomal membrane protein TMEM192 deficiency triggers crosstalk between autophagy and apoptosis in HepG2 hepatoma cells. Oncol. Rep. 28, 985-991.
  23. Lock, R., Roy, S., Kenific, C.M., Su, J.S., Salas, E., Ronen, S.M., and Debnath, J. (2011). Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol. Biol. Cell. 22, 165-178.
  24. Lock, R., Kenific, C.M., Leidal, A.M., Salas, E., and Debnath, J. (2014). Autophagy-dependent production of secreted factors facilitates oncogenic RAS-driven invasion. Cancer Discov. 4, 466-479.
  25. Mizuiri, H., Yoshida, K., Toge, T., Oue, N., Aung, P.P., Noguchi, T., and Yasui, W. (2005). DNA methylation of genes linked to retinoid signaling in squamous cell carcinoma of the esophagus: DNA methylation of CRBP1 and TIG1 is associated with tumor stage. Cancer Sci. 96, 571-577.
  26. Mizushima, N., and Komatsu, M. (2011). Autophagy: renovation of cells and tissues. Cell 147, 728-741.
  27. Mizushima, N., Yoshimori, T., and Ohsumi, Y. (2011). The role of Atg proteins in autophagosome formation. Annu. Rev. Cell Dev. Biol. 27, 107-132.
  28. Nagpal, S., Patel, S., Asano, A.T., Johnson, A.T., Duvic, M., and Chandraratna, R.A. (1996). Tazarotene-induced gene 1 (TIG1), a novel retinoic acid receptor-responsive gene in skin. J. Invest. Dermatol. 106, 269-274.
  29. Orfali, N., O'Donovan, T.R., Nyhan, M.J., Britschgi, A., Tschan, M.P., Cahill, M.R., Mongan, N.P., Gudas, L.J., and McKenna, S.L. (2015). Induction of autophagy is a key component of alltrans-retinoic acid-induced differentiation in leukemia cells and a potential target for pharmacologic modulation. Exp. Hematol. 43, 781-793 e782.
  30. Peng, Z., Shen, R., Li, Y.W., Teng, K.Y., Shapiro, C.L., and Lin, H.J. (2012). Epigenetic repression of RARRES1 is mediated by methylation of a proximal promoter and a loss of CTCF binding. PloS One 7, e36891.
  31. Qu, X., Yu, J., Bhagat, G., Furuya, N., Hibshoosh, H., Troxel, A., Rosen, J., Eskelinen, E.L., Mizushima, N., Ohsumi, Y., et al. (2003). Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J. Clin. Invest. 112, 1809-1820.
  32. Rajawat, Y., Hilioti, Z., and Bossis, I. (2010). Autophagy: a target for retinoic acids. Autophagy 6,1224-1226.
  33. Russell, R.C., Tian, Y., Yuan, H., Park, H.W., Chang, Y.Y., Kim, J., Kim, H., Neufeld, T.P., Dillin, A., and Guan, K.L. (2013). ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 15, 741-750.
  34. Schroder, B., Wrocklage, C., Hasilik, A., and Saftig, P. (2010). Molecular characterisation of 'transmembrane protein 192' (TMEM192), a novel protein of the lysosomal membrane. Biol. Chem. 391, 695-704.
  35. Shutoh, M., Oue, N., Aung, P.P., Noguchi, T., Kuraoka, K., Nakayama, H., Kawahara, K., and Yasui, W. (2005). DNA methylation of genes linked with retinoid signaling in gastric carcinoma: expression of the retinoid acid receptor beta, cellular retinol-binding protein 1, and tazarotene-induced gene 1 genes is associated with DNA methylation. Cancer 104, 1609-1619.
  36. Simon, H.U. (2012). Autophagy in myocardial differentiation and cardiac development. Circ. Res. 110, 524-525.
  37. Takamura, A., Komatsu, M., Hara, T., Sakamoto, A., Kishi, C., Waguri, S., Eishi, Y., Hino, O., Tanaka, K., and Mizushima, N. (2011). Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 25, 795-800.
  38. Tsai, F.M., Wu, C.C., Shyu, R.Y., Wang, C.H., and Jiang, S.Y. (2011). Tazarotene-induced gene 1 inhibits prostaglandin E2-stimulated HCT116 colon cancer cell growth. J. Biomed. Sci. 18, 88.
  39. Vessoni, A.T., Muotri, A.R., and Okamoto, O.K. (2012). Autophagy in stem cell maintenance and differentiation. Stem Cells Dev. 21, 513-520.
  40. Wang, Z., Cao, L., Kang, R., Yang, M., Liu, L., Zhao, Y., Yu, Y., Xie, M., Yin, X., Livesey, K.M., et al. (2011). Autophagy regulates myeloid cell differentiation by p62/SQSTM1-mediated degradation of PML-RARalpha oncoprotein. Autophagy 7, 401-411.
  41. White, E. (2015). The role for autophagy in cancer. J. Clin. Invest. 125, 42-46.
  42. Wu, C.C., Shyu, R.Y., Chou, J.M., Jao, S.W., Chao, P.C., Kang, J.C., Wu, S.T., Huang, S.L., and Jiang, S.Y. (2006). RARRES1 expression is significantly related to tumour differentiation and staging in colorectal adenocarcinoma. Eur. J. Cancer 42, 557-565.
  43. Wu, C.C., Tsai, F.M., Shyu, R.Y., Tsai, Y.M., Wang, C.H., and Jiang, S.Y. (2011). G protein-coupled receptor kinase 5 mediates Tazarotene-induced gene 1-induced growth suppression of human colon cancer cells. BMC Cancer 11, 175.
  44. Yanatatsaneejit, P., Chalermchai, T., Kerekhanjanarong, V., Shotelersuk, K., Supiyaphun, P., Mutirangura, A., and Sriuranpong, V. (2008). Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncol. 44, 400-406.
  45. Yang, S., Wang, X., Contino, G., Liesa, M., Sahin, E., Ying, H., Bause, A., Li, Y., Stommel, J.M., Dell'antonio, G., et al. (2011). Pancreatic cancers require autophagy for tumor growth. Genes Dev. 25, 717-729.
  46. Yue, Z., Jin, S., Yang, C., Levine, A.J., and Heintz, N. (2003). Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc. Natl. Acad. Sci. USA 100, 15077-15082.
  47. Zhang, J., Liu, L., and Pfeifer, G.P. (2004). Methylation of the retinoid response gene TIG1 in prostate cancer correlates with methylation of the retinoic acid receptor beta gene. Oncogene 23, 2241-2249.
  48. Zhuang, W., Li, B., Long, L., Chen, L., Huang, Q., and Liang, Z. (2011). Induction of autophagy promotes differentiation of gliomainitiating cells and their radiosensitivity. Int. J. Cancer 129, 2720-2731.

Cited by

  1. Hypermethylation and loss of retinoic acid receptor responder 1 expression in human choriocarcinoma vol.36, pp.1, 2017,