In Vivo Angiogenic Capacity of Stem Cells from Human Exfoliated Deciduous Teeth with Human Umbilical Vein Endothelial Cells

  • Kim, Ji-Hye (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Gee-Hye (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Kim, Jae-Won (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Pyeon, Hee Jang (Department of Anatomy and Cell Biology, Sungkyunkwan University School of Medicine) ;
  • Lee, Jae Cheoun (Children's Dental Center and CDC Baby Tooth Stem Cell Bank) ;
  • Lee, Gene (Laboratory of Molecular Genetics, Dental Research Institute, School of Dentistry, Seoul National University) ;
  • Nam, Hyun (Stem Cell and Regenerative Medicine Center, Research Institute for Future Medicine, Samsung Medical Center)
  • Received : 2016.05.27
  • Accepted : 2016.11.07
  • Published : 2016.11.30


Dental pulp is a highly vascularized tissue requiring adequate blood supply for successful regeneration. In this study, we investigated the functional role of stem cells from human exfoliated deciduous teeth (SHEDs) as a perivascular source for in vivo formation of vessel-like structures. Primarily isolated SHEDs showed mesenchymal stem cell (MSC)-like characteristics including the expression of surface antigens and in vitro osteogenic and adipogenic differentiation potentials. Moreover, SHEDs were positive for NG2, ${\alpha}$-smooth muscle actin (SMA), platelet-derived growth factor receptor beta ($PDGFR{\beta}$), and CD146 as pericyte markers. To prove feasibility of SHEDs as perivascular source, SHEDs were transplanted into immunodeficient mouse using Matrigel with or without human umbilical vein endothelial cells (HUVECs). Transplantation of SHEDs alone or HUVECs alone resulted in no formation of vessel-like structures with enough red blood cells. However, when SHEDs and HUVECs were transplanted together, extensive vessel-like structures were formed. The presence of murine erythrocytes within lumens suggested the formation of anastomoses between newly formed vessel-like structures in Matrigel plug and the host circulatory system. To understand underlying mechanisms of in vivo angiogenesis, the expression of angiogenic cytokine and chemokine, their receptors, and MMPs was compared between SHEDs and HUVECs. SHEDs showed higher expression of1VEGF, SDF-$1{\alpha}$, and $PDGFR{\beta}$ than HUVECs. On the contrary, HUVECs showed higher expression of VEGF receptors, CXCR4, and PDGF-BB than SHEDs. This differential expression pattern suggested reciprocal interactions between SHEDs and HUVECs and their involvement during in vivo angiogenesis. In conclusion, SHEDs could be a feasible source of perivascular cells for in vivo angiogenesis.


Supported by : National Research Foundation, Ministry of Health & Welfare


  1. Andrae, J., Gallini, R., and Betsholtz, C. (2008). Role of plateletderived growth factors in physiology and medicine. Genes Dev. 22, 1276-1312.
  2. Armulik, A., Abramsson, A., and Betsholtz, C. (2005). Endothelial/pericyte interactions. Circ. Res. 97, 512-523.
  3. Barnett, J.M., McCollum, G.W., Fowler, J.A., Duan, J.J., Kay, J.D., Liu, R.Q., Bingaman, D.P., and Penn, J.S. (2007). Pharmacologic and genetic manipulation of MMP-2 and -9 affects retinal neovascularization in rodent models of OIR. Invest. Ophthalmol. Vis. Sci. 48, 907-915.
  4. Beck, L., Jr., and D'Amore, P.A. (1997). Vascular development:cellular and molecular regulation. FASEB J. 11, 365-373.
  5. Bento, L.W., Zhang, Z., Imai, A., Nor, F., Dong, Z., Shi, S., Araujo, F.B., and Nor, J.E. (2013). Endothelial differentiation of SHED requires MEK1/ERK signaling.J. Dent. Res. 92, 51-57.
  6. Bronckaers, A., Hilkens, P., Fanton, Y., Struys, T., Gervois, P., Politis, C., Martens, W., and Lambrichts, I. (2013). Angiogenic properties of human dental pulp stem cells. PloS one 8, e71104.
  7. Caplan, A.I. (2008). All MSCs are pericytes? Cell Stem Cell 3, 229-230.
  8. Cheng, X.W., Kuzuya, M., Nakamura, K., Maeda, K., Tsuzuki, M., Kim, W., Sasaki, T., Liu, Z., Inoue, N., Kondo, T., et al. (2007). Mechanisms underlying the impairment of ischemia-induced neovascularization in matrix metalloproteinase 2-deficient mice. Circ. Res. 100, 904-913.
  9. Crisan, M., Yap, S., Casteilla, L., Chen, C.W., Corselli, M., Park, T.S., Andriolo, G., Sun, B., Zheng, B., Zhang, L., et al. (2008). A perivascular origin for mesenchymal stem cells in multiple human organs. Cell Stem Cell 3, 301-313.
  10. Fang, J., Shing, Y., Wiederschain, D., Yan, L., Butterfield, C., Jackson, G., Harper, J., Tamvakopoulos, G., and Moses, M.A. (2000). Matrix metalloproteinase-2 is required for the switch to the angiogenic phenotype in a tumor model. Proc. Natl.Acad. Sci. USA 97, 3884-3889.
  11. Gaengel, K., Genove, G., Armulik, A., and Betsholtz, C. (2009). Endothelial-mural cell signaling in vascular development and angiogenesis. Arter. Thromb. Vasc. Biol.29, 630-638.
  12. Gronthos, S., Mankani, M., Brahim, J., Robey, P.G., and Shi, S. (2000). Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. Proc. Natl.Acad. Sci. USA 97, 13625-13630.
  13. Huang, G.T., Gronthos, S., and Shi, S. (2009). Mesenchymal stem cells derived from dental tissues vs. those from other sources:their biology and role in regenerative medicine. J. Dent. Res. 88, 792-806.
  14. Ishii, M., Shibata, R., Numaguchi, Y., Kito, T., Suzuki, H., Shimizu, K., Ito, A., Honda, H., and Murohara, T. (2011). Enhanced angiogenesis by transplantation of mesenchymal stem cell sheet created by a novel magnetic tissue engineering method. Arter. Thromb. Vasc. Biol. 31, 2210-2215.
  15. Isner, J.M., and Asahara, T. (1999). Angiogenesis and vasculogenesis as therapeutic strategies for postnatal neovascularization. J. Clin. Invest. 103, 1231-1236.
  16. Isner, J.M., Pieczek, A., Schainfeld, R., Blair, R., Haley, L., Asahara, T., Rosenfield, K., Razvi, S., Walsh, K., and Symes, J.F. (1996). Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb. Lancet 348, 370-374.
  17. Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., and Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048-1051.
  18. Jain, R.K., Au, P., Tam, J., Duda, D.G., and Fukumura, D. (2005). Engineering vascularized tissue. Nat. Biotechnol. 23, 821-823.
  19. Kinnaird, T., Stabile, E., Burnett, M.S., Shou, M., Lee, C.W., Barr, S., Fuchs, S., and Epstein, S.E. (2004). Local delivery of marrowderived stromal cells augments collateral perfusion through paracrine mechanisms. Circulation 109, 1543-1549.
  20. Li, Z., Jiang, C.M., An, S., Cheng, Q., Huang, Y.F., Wang, Y.T., Gou, Y.C., Xiao, L., Yu, W.J., and Wang, J. (2014). Immunomodulatory properties of dental tissue-derived mesenchymal stem cells. Oral Dis. 20, 25-34.
  21. Liu, J., Yu, F., Sun, Y., Jiang, B., Zhang, W., Yang, J., Xu, G.T., Liang, A., and Liu, S. (2015). Concise reviews: characteristics and potential applications of human dental tissue-derived mesenchymal stem cells. Stem Cells 33, 627-638.
  22. Melero-Martin, J.M., Khan, Z.A., Picard, A., Wu, X., Paruchuri, S. and Bischoff, J. (2007). In vivo vasculogenic potential of human blood-derived endothelial progenitor cells. Blood 109, 4761-4768.
  23. Melero-Martin, J.M., De Obaldia, M.E., Kang, S.Y., Khan, Z.A., Yuan, L., Oettgen, P. and Bischoff, J. (2008). Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ. Res. 103, 194-202.
  24. Miura, M., Gronthos, S., Zhao, M., Lu, B., Fisher, L.W., Robey, P.G., and Shi, S. (2003). SHED: stem cells from human exfoliated deciduous teeth. Proc. Natl.Acad. Sci. USA 100, 5807-5812.
  25. Nam, H., Kim, J.H., Kim, J.W., Seo, B.M., Park, J.C., Kim, J.W., and Lee, G. (2014). Establishment of Hertwig's epithelial root sheath/epithelial rests of Malassez cell line from human periodontium. Mol. Cells 37, 562-567.
  26. Petit, I., Jin, D., and Rafii, S. (2007). The SDF-1-CXCR4 signaling pathway: a molecular hub modulating neo-angiogenesis. Trends Immunol. 28, 299-307.
  27. Ren, S., and Duffield, J.S. (2013). Pericytes in kidney fibrosis. Curr. Opin. Nephrol. Hypertension 22, 471-480.
  28. Rumman, M., Dhawan, J., and Kassem, M. (2015). Concise review: quiescence in adult stem cells: biological significance and relevance to tissue regeneration. Stem Cells 33, 2903-2912.
  29. Rundhaug, J.E. (2003). Matrix metalloproteinases, angiogenesis, and cancer: commentary re: A.C. Lockhart et al., Reduction of wound angiogenesis in patients treated with BMS-275291, a broad spectrum matrix metalloproteinase inhibitor. Clin.Cancer Res. 9: 00-00, 2003. Clin. Cancer Res. 9, 551-554.
  30. Schmalz, G., and Smith, A.J. (2014). Pulp development, repair, and regeneration: challenges of the transition from traditional dentistry to biologically based therapies.J. Endod. 40, S2-5.
  31. Seo, B.M., Miura, M., Gronthos, S., Bartold, P.M., Batouli, S., Brahim, J., Young, M., Robey, P.G., Wang, C.Y., and Shi, S. (2004). Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364, 149-155.
  32. Shi, S., and Gronthos, S. (2003). Perivascular niche of postnatal mesenchymal stem cells in human bone marrow and dental pulp. J. Bone Miner. Res. 18, 696-704.
  33. Tomic, S., Djokic, J., Vasilijic, S., Vucevic, D., Todorovic, V., Supic, G., and Colic, M. (2011). Immunomodulatory properties of mesenchymal stem cells derived from dental pulp and dental follicle are susceptible to activation by toll-like receptor agonists. Stem Cells Dev. 20, 695-708.
  34. Volponi, A.A., Pang, Y., and Sharpe, P.T. (2010). Stem cell-based biological tooth repair and regeneration. Trends Cell Biol. 20, 715-722.
  35. Vu, T.H., Shipley, J.M., Bergers, G., Berger, J.E., Helms, J.A., Hanahan, D., Shapiro, S.D., Senior, R.M., and Werb, Z. (1998). MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411-422.
  36. Zhou, Z., Apte, S.S., Soininen, R., Cao, R., Baaklini, G.Y., Rauser, R.W., Wang, J., Cao, Y., and Tryggvason, K. (2000). Impaired endochondral ossification and angiogenesis in mice deficient in membrane-type matrix metalloproteinase I. Proc. Natl.Acad. Sci. USA 97, 4052-4057.

Cited by

  1. Angiogenic Capacity of Dental Pulp Stem Cell Regulated by SDF-1α-CXCR4 Axis vol.2017, 2017,
  2. The Significance of SDF-1α-CXCR4 Axis in in vivo Angiogenic Ability of Human Periodontal Ligament Stem Cells vol.40, pp.6, 2017,
  3. Matrix metalloproteinase inhibitors enhance the efficacy of frontline drugs against Mycobacterium tuberculosis vol.14, pp.4, 2018,
  4. Stathmin inhibits proliferation and differentiation of dental pulp stem cells via sonic hedgehog/Gli vol.22, pp.7, 2018,
  5. Dental Mesenchymal Stem Cell-Based Translational Regenerative Dentistry: From Artificial to Biological Replacement vol.6, pp.2296-4185, 2018,