DOI QR코드

DOI QR Code

Productivity of Saccharina japonica Areschoug by Depth in Gijang and Wando Offshore, Korea

기장과 완도해역에서의 수층별 다시마 (Saccharina japonica Areschoug) 생산성

  • Jang, Jae-Gil (Marine Eco-Technology Institute Co., Ltd.) ;
  • Lee, Hwa-Yeon (Gyeong Sang Nam Do Fisheries Resources Institute) ;
  • Kim, Nam-Gil (Department of Marine Biology and Aquaculture/Institute of Marine Industry, Gyeongsang National University)
  • 장재길 ((주)해양생태기술연구소) ;
  • 이화연 (경상남도 수산자원연구소) ;
  • 김남길 (경상대학교 해양생명과학과/해양산업연구소)
  • Received : 2016.12.20
  • Accepted : 2017.01.17
  • Published : 2016.12.31

Abstract

Productivity of Saccharina japonica was evaluated by water layers in Gijang and Wando sea area to find the suitable farming areas for mass production of biomass. For this, S. japonica was cultivated at various depths (0.5, 1, 2, 3 m), respectively. As the result, the growths in Gijang were 225.1-261.5 cm in length, 18.5-21.3 cm in widths, 396.0-537.7 g in weights, 14.3-17.8 kg/cluster in biomass, and those in Wando were 332.0-435.7 cm in lengths, 24.6-32.5 cm in widths, 766.0-1,232.9 g in weights, 16.4-24.3 kg/cluster in biomass. It showed that the growths of blades in Wando were faster than those in Gijang. The growth rates of blades by the depths were faster at 0.5-1 m depth from January to June. After June, however, as the growth rates of blades were lower than the shedding rates of blades, it showed that the growth of S. japonica decreased at all depth conditions except 2 m depth. Productivity of S. japonica was better in Wando which is lower in the water temperature and nutrients than Gijang.

Keywords

Acknowledgement

Grant : 바이오매스용 해조류 대량생산 기술개발

Supported by : 농림수산식품부

References

  1. Bae, Y. H. and Kim, Y. S. 2003. Development of a photosynthetic numerical model explaining the relationships between light intensity, $CO_2$ concentration, temperature and photosynthetic rate. J. Korea. Assoc. Sci. Edu. 31, 87-93.
  2. Baik, K. K. and Pyen, C. K. 1973. Study on growth of Laminaria japonica Areschoug in the coastal area of Kang Won Do. Bull. Nat'l. Fish. Res. Dev. Inst. Korea. 11, 79-92.
  3. Chang, J. W. and Geon, S. H. 1970. Studies on the culture of Laminaria (1) On the transplantation of tangle Laminaria religiosa Miyabe in temperate zone (the coast of Ilsan-Dong, Ulsan city). Bull. Nat'l. Fish. Res. Dev. Inst. Korea. 5, 63-74.
  4. Chang, J. W. Chung, D. Y. Bae, K. U. and Yun, M. N. 1973 Studies on the culture of Laminaria (3) Comparison on the growth of cultured Laminaria japonica Areschoug in Mipo Bay, Ulsan City. Bull. Nat'l. Fish. Res. Dev. Inst. Korea. 11, 37-57.
  5. Choi, S. J. Lee, S. M. and Lee, J.W. 2012. Production of bio-ethanol from red algae by acid hydrolysis and enzyme treatment. Appl. Chem. Eng. 23, 279-283.
  6. Choi, T. S. and Kim, K. Y. 2002. Time-dependent variation of growth and nutrient uptake of Ulva pertusa Kjellman (Chlorophyta) from intertidal eelgrass beds. Algae 17, 249-257. https://doi.org/10.4490/ALGAE.2002.17.4.249
  7. DeBoer, J. A. 1981. Nutrient. In: Lobban C.S. and Wynne M.J. (eds), The biology of seaweeds, California University Press. California. USA. pp 356-392.
  8. Gerard, V. A. 1986. Photosynthetic characteristics of giant kelp (Macrocystis pyrifera) determined in situ. Mar. Biol. 90, 473-482. DOI: 10.1007/BF00428571.
  9. Han, H. J. and Kim, S. J. 2006. Isolation and characterization of a strain for economical ethanol production. Kor. J. Biotechnol. Bioeng. 21, 267-272.
  10. Haroun, R. Aruga, Y. and Yokohama, Y. 1992. Seasonal variation of photosynthetic properties of Ecklonia cava (Laminariales, Phaeophyta) in Nabeta Bay, central Japan. La mer 30, 339-348.
  11. Harper, J. R. 1977. Population biology of plants. Academic Press. London. UK. 1-892.
  12. Hwang, E. K. Gong, Y. G. Ha, D. S. and Park, C. S. 2010. Nursery and main culture conditions for mass cultivation of the brown alga, Ecklonia cava Kjellman. Kor. J. Fish. Aquat. Sci. 43, 687-692. DOI: 10.5657/kfas.2010.43.6.687.
  13. Hwang, J. R. Shim, J. H. Kim, J. B. Kim, S. Y. and Lee, Y. H. 2011. Variations in nutrients & $CO_2$ uptake rates and photosynthetic characteristics of Saccharina japonica from the south coast of Korea. J. Kor. Soc. Oceanogr. 16, 196-205. DOI: 10.7850/jkso.2011.16.4.196.
  14. Kain, J. M. and Dawes, C. P. 1987. Useful European seaweeds: past hopes and present cultivation. Hydrobiol. 151/152, 173-181. DOI: 10.1007/978-94-009-4057-4_24.
  15. Kang, J. W. and Koh, N. P. 1977. Seaweed cultivation. Taehwa Publ. Co. Busan. Korea. 1-294.
  16. Kang, R. S. and Koh, C. H. 1999a. Growth, reproduction, mortality, and production of Laminaria japonica Areschoug on the southeastern coast of Korea. J. Kor. Soc. Oceanogr. 4, 226-236.
  17. Kang, R. S. and Koh, C. H. 1999b. Seasonal photosynthetic performance of Laminaria japonica sporophytes on the southestern coast of Korea. J. Kor. Soc. Oceanogr. 4, 237-245.
  18. Kang, R. S. and Koh, C. H. 1999c. Growth and survival of Laminaria japonica Areschoug at different densities. J. Kor. Fish. Soc. 32, 444-451.
  19. Kang, Y. H. Park, S. R. Oak, J. H. Lee, J. A. and Chung, I. K. 2009. Changes of tissue N content and community structure of macroalgae on intertidal rocky shores in Tongyeong area due to sewage discharge. Kor. J. Fish. Aquat. Sci. 42, 276-283. DOI: 10.5657/kfas.2009.42.3.276.
  20. Kim, G. H. 2013. Production of bio-ethanol and alginate-degrading enzyme from Laminaria japonica. Master Thesis Silla National University. Busan. Korea.
  21. Kim, J. M. Lee, Y. H. Jung, S. H. Lee, J. T. and Cho, M. H. 2010. Production of methane from anaerobic fermentation of marine macro-algae. Clean Technol. 16, 51-58.
  22. Kim, N. G. 2010. Present and future of the seaweed cultivation in Korea. Seaweed Resour. 22, 22-34.
  23. Kim, S. J. 2002. Growth of Laminaria japonica Areschong from the cultivation ground on the coast of Jindo, southwestern coast of Korea. Master Thesis Chonnam National University. Gwangju. Korea.
  24. KIMST. 2009. Strategies to industrialize the algae bio-business and policy direction. KIMST Res. Rep. 1-225.
  25. Kirihara, S. Notoya, M. and Aruga, Y. 1989. Cultivation of Laminaria japonica at Hachinohe, Aomori Prefecture, Japan. Kor. J. Phycol. 4, 199-206.
  26. Kitadai, Y. and Kadowaki, S. 2003. The growth process and N, P uptake rates of Laminaria japonica cultured in coastal fish farms. Suisanzoshoku. 51, 15-23. DOI: 10.11233/aquaculturesci1953.51.15
  27. KOSIS. 2012. Fishery production trends report [Internet]. Statistics Korea, Daejeon. Korea. Retrieved from http://kostat.go.kr/portal/korea/index.action on Oct 7, 2014.
  28. Lapointe, B. E. 1987. Phosphorus- and nitrogen-limited photosynthesis and growth of Gracilaria tikvahiae in the Florida keys: an experimental field study. Mar. Biol. 93, 561-568. DOI: 10.1007/BF00392794.
  29. Lee, J. H. Kim, D. H. Jung, S. P. Choi, S. J. Chung, I. K. and Shin, J. A. 2005. Cultivation of Laminaria japonica (Laminariales, Phaeophyta) in Udo coast, Jeju, Korea. Algae 20, 167-176. DOI: 10.4490/algae.2005.20.2.167.
  30. Lee, J. Y. 2012. Pretreatment and simultaneous saccharification of Saccharina japonica for production of bioethanol. Master Thesis Dankook National University. Yongin. Korea.
  31. Lee, S. M. Kim, J. H. Cho, H. Y. Joo, H. and Lee, J. H. 2009. Production of bio-ethanol from brown algae by physicochemical hydrolysis. J. Kor. Ind. Eng. Chem. 20, 517-521.
  32. Lobban, C. S. and Harrison, P. J. 1994. Nutrients. In: Seaweed ecology and physiology. Cambridge University Press. New York. USA. 163-209. DOI: 10.1017/CBO9780511626210.
  33. Maita, Y. Mizuta, H. and Yanada, M. 1991. Nutrient environment in natural and cultivated grounds of Laminaria japonica. Bull. Fac. Fish. Hokkaido. Univ. 42, 98-106.
  34. Matsuoka, M. Ohno, M. and Akizuki, T. 1991. Growth of transplanted Laminaria japonica Areschoug in the culture ground of the Naruto straits in temperate waters. Suisanzoshoku. 39, 267-271. DOI: 10.11233/aquaculturesci1953.39.267.
  35. MFAAT. 2007. Bioenergy market. Ministry of Foreign Affairs And Trade. 1-271.
  36. Na, C. K. and Song, M. K. 2012. Characteristics of acid-hydrolysis and ethanol fermentation of Laminaria japonica. Kor. Chem. Eng. Res. 50, 141-148. DOI: 10.9713/kcer.2012.50.1.141
  37. Park, J. I. Woo, H. C. and Lee, J.H. 2008. Production of bio-energy from marine algae: status and perspectives. Kor. Chem. Eng. Res. 46, 833-844.
  38. Sanbonsuga, Y. 1984. Studies of the growth of forced Laminaria. Bull. Hokkaiod. Reg. Fish. Res. Labo. 49, 1-79
  39. Sanbonsuga, Y. Machiguchi, Y. and Saga, N. 1987. Productivity estimation and evaluation of the cultivation factors in biomass production of Laminaria. Bull. Hokkaido. Reg. Fish. Res. Lab. 51, 45-50.
  40. Schiel, D. R. 1985. Growth, survival and reproduction of two species of marine algae at different densities in natural stands. J. Ecol. 73, 199-217. https://doi.org/10.2307/2259778
  41. Sohn, C. H. 1996. Historical review on seaweed cultivation of Korea. Algae 11, 357-364.
  42. Subhadra, B. and Edwards, M. 2010. An intergrated renewable energy park approach for algal biofuel production in United States. Energy Policy. 38, 4897-4902. DOI: 10.1016/j.enpol.2010.04.036.
  43. Villares, R. Puente, X. and Carballeira, A. 1999. Nitrogen and phosphorus in Ulva sp. in the Galician Rias Bajas (northwest Spain): Seasonal fluctuations and influence on growth. Bol. Inst. Esp. Oceanogr. 15, 337-341.

Cited by

  1. 바이오매스용 해조류 대량 양식을 위한 자동화 시스템 개발 vol.23, pp.2, 2020, https://doi.org/10.21289/ksic.2020.23.2.351