DOI QR코드

DOI QR Code

Assessing the Potential of Thermal Imaging in Recognition of Breast Cancer

  • Zadeh, Hossein Ghayoumi (Biomedical Engineering Department, Hakim Sabzevari University) ;
  • Haddadnia, Javad (Biomedical Engineering Department, Hakim Sabzevari University) ;
  • Ahmadinejad, Nasrin (Advanced Diagnostic and Interventional Radiology Research Center, Tehran University of Medical Sciences) ;
  • Baghdadi, Mohammad Reza (Research Institute for Information and Communication Technology)
  • Published : 2016.01.11

Abstract

Background: Breast cancer is a common disorder in women, constituting one of the main causes of death all over the world. The purpose of this study was to determine the diagnostic value of the breast tissue diseases by the help of thermography. Materials and Methods: In this paper, we applied non-contact infrared camera, INFREC R500 for evaluating the capabilities of thermography. The study was conducted on 60 patients suspected of breast disease, who were referred to Imam Khomeini Imaging Center. Information obtained from the questionnaires and clinical examinations along with the obtained diagnostic results from ultrasound images, biopsies and thermography, were analyzed. The results indicated that the use of thermography as well as the asymmetry technique is useful in identifying hypoechoic as well as cystic masses. It should be noted that the patient should not suffer from breast discharge. Results: The accuracy of asymmetry technique identification is respectively 91/89% and 92/30%. Also the accuracy of the exact location of identification is on the 61/53% and 75%. The approach also proved effective in identifying heterogeneous lesions, fibroadenomas, and intraductal masses, but not ISO-echoes and calcified masses. Conclusions: According to the results of the investigation, thermography may be useful in the initial screening and supplementation of diagnostic procedures due to its safety (its non-radiation properties), low cost and the good recognition of breast tissue disease.

Keywords

Asymmetry technique;biopsy;breast cancer;thermography

Acknowledgement

Supported by : Tehran University of medical science

References

  1. Acharya UR, Ng EYK, Tan JH, et al (2012). Thermography based breast cancer detection using texture features and support vector machine. J Med Systems, 36, 1503-10. https://doi.org/10.1007/s10916-010-9611-z
  2. Araujo MC, Lima RC, De Souza RM (2014). Interval symbolic feature extraction for thermography breast cancer detection. Expert Systems Applications, 41, 6728-37. https://doi.org/10.1016/j.eswa.2014.04.027
  3. Arora N, Martins D, Ruggerio D, et al (2008). Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg, 196, 523-6. https://doi.org/10.1016/j.amjsurg.2008.06.015
  4. Collett AE, Guilfoyle C, Gracely EJ, et al (2014). Infrared imaging does not predict the presence of malignancy in patients with suspicious radiologic breast abnormalities. Breast J, 20, 375-80. https://doi.org/10.1111/tbj.12273
  5. Kelly KM, Dean J, Comulada WS, et al (2010). Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts. Eur Radiol, 20, 734-42. https://doi.org/10.1007/s00330-009-1588-y
  6. Lahiri B, Bagavathiappan S, Jayakumar T, et al (2012). Medical applications of infrared thermography: a review. Infrared Phys Technol, 55, 221-35. https://doi.org/10.1016/j.infrared.2012.03.007
  7. Long E, Beales IL (2014). The role of obesity in oesophageal cancer development. Therapeutic Advances Gastroenterol, 7, 247-68. https://doi.org/10.1177/1756283X14538689
  8. Moghbel M, Mashohor S (2013). A review of computer assisted detection/diagnosis (CAD) in breast thermography for breast cancer detection. Artificial Intelligence Review, 39, 305-13. https://doi.org/10.1007/s10462-011-9274-2
  9. Muffazzal R, Poonam M, Rajkumar M, et al (2014). Evaluation of digital infrared thermal imaging as an adjunctive screening method for breast carcinoma: A pilot study. Int J Surg, 12, 1439-43. https://doi.org/10.1016/j.ijsu.2014.10.010
  10. Ng EK (2009). A review of thermography as promising noninvasive detection modality for breast tumor. Int J Thermal Sci, 48, 849-59. https://doi.org/10.1016/j.ijthermalsci.2008.06.015
  11. Nicandro CR, Efren MM, Maria Yaneli AA, et al (2013). Evaluation of the diagnostic power of thermography in breast cancer using bayesian network classifiers. Computational and mathematical methods in medicine.
  12. Penhoet EE, Petitti DB, Joy JE (2005). Saving Women's lives: strategies for improving breast cancer detection and diagnosis, National Academies Press.
  13. Saika K, Sobue T (2009). Epidemiology of breast cancer in Japan and the US. JMAJ, 52, 39-44.
  14. Steketee J (1973). Spectral emissivity of skin and pericardium. Physics Med Biol, 18, 686. https://doi.org/10.1088/0031-9155/18/5/307
  15. Vreugdenburg TD, Willis CD, Mundy L, et al (2013). A systematic review of elastography, electrical impedance scanning, and digital infrared thermography for breast cancer screening and diagnosis. Breast Cancer Res Treat, 137, 665-76. https://doi.org/10.1007/s10549-012-2393-x
  16. Watmough D, Fowler PW, Oliver R (1970). The thermal scanning of a curved isothermal surface: implications for clinical thermography. Physics Med Biol, 15, 1. https://doi.org/10.1088/0031-9155/15/1/301
  17. Wishart G, Campisi M, Boswell M, et al (2010). The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surg Oncol, 36, 535-40. https://doi.org/10.1016/j.ejso.2010.04.003

Cited by

  1. Effects of different methods of anesthesia and analgesia on immune function and serum tumor marker levels in critically ill patients vol.14, pp.3, 2017, https://doi.org/10.3892/etm.2017.4762