Association of Histopathological Markers with Clinico-Pathological Factors in Mexican Women with Breast Cancer

  • Bandala, Cindy (Division of Neuroscience, National Institute of Rehabilitation, SSA) ;
  • De la Garza-Montano, Paloma (Division of Neuroscience, National Institute of Rehabilitation, SSA) ;
  • Cortes-Algara, Alfredo (Laboratory of Molecular Oncology and Oxidative Stress, Superior Medicine School of National Polytechnic Institute) ;
  • Cruz-Lopez, Jaime (Military School of Graduate of Health, SEDENA) ;
  • Dominguez-Rubio, Rene (Laboratory of Molecular Oncology and Oxidative Stress, Superior Medicine School of National Polytechnic Institute) ;
  • Gonzalez-Lopez, Nelly Judith (Gynecology Hospital No. 3, Medical Center "La Raza", IMSS) ;
  • Cardenas-Rodriguez, Noemi (Laboratory of Neurosciences (Neurochemistry), National Institute of Pediatrics, SSA) ;
  • Alfaro-Rodriguez, A (Division of Neuroscience, National Institute of Rehabilitation, SSA) ;
  • Salcedo, M (Unidad de Investigacion Medica en Enfermedades Oncologicas, National Center Medical "Siglo XXI", IMSS) ;
  • Floriano-Sanchez, E (Military School of Graduate of Health, SEDENA) ;
  • Lara-Padilla, Eleazar (Laboratory of Molecular Oncology and Oxidative Stress, Superior Medicine School of National Polytechnic Institute)
  • Published : 2016.01.11


Background: Breast cancer (BCa) is the most common malignancy in Mexican women. A set of histopathological markers has been established to guide BCa diagnosis, prognosis and treatment. Nevertheless, in only a few Mexican health services, such as that of the Secretariat of National Defense (SEDENA for its acronym in Spanish), are these markers commonly employed for assessing BCa. The aim of this study was to explore the association of Ki67, TP53, HER2/neu, estrogenic receptors (ERs) and progesterone receptors (PRs) with BCa risk factors. Materials and Methods: Clinical histories provided background patient information. Immunohistochemical (IHC) analysis was conducted on 48 tissue samples from women diagnosed with BCa and treated with radical mastectomy. The Chi square test or Fisher exact test together with the Pearson and Spearman correlation were applied. Results: On average, patients were $58{\pm}10.4$ years old. It was most common to find invasive ductal carcinoma (95.8%), histological grade 3 (45.8%), with a poor Nottingham Prognostic Index (NPI; 80.4%). ERs and PRs were associated with smoking and alcohol consumption, metastasis at diagnosis and Ki67 expression (p<0.05). PR+ was also related to urea and ER+ (p<0.05). Ki67 was associated with TP53 and elevated triglycerides (p<0.05), and HER2/neu with ER+, the number of pregnancies and tumor size (p<0.05). TP53 was also associated with a poor NPI (p<0.05) and CD34 with smoking (p<0.05). The triple negative status (ER-/PR-/HER2/neu-) was related to smoking, alcohol consumption, exposure to biomass, number of pregnancies, metastasis and a poor NPI (p<0.05). Moreover, the luminal B subty was associated with histological type (p=0.007), tumor size (p=0.03) and high cholesterol (p=0.02). Conclusions: Ki67, TP53, HER2/neu, ER and PR proved to be related to several clinical and pathological factors. Hence, it is crucial to determine this IHC profile in women at risk for BCa. Certain associations require further study to understand physiological/biochemical/molecular processes.


BCA;Ki67;TP53;HER2/neu;estrogenic receptor;progesterone receptor;Mexican women


  1. Amadou A, Torres-Mejia G, Hainaut P, Romieu I (2014). Breast cancer in Latin America: global burden, patterns, and risk factors. Salud Publica Mex, 56, 547-54
  2. Abovaker S Kamil M (2014). Incidence of breast cancer in a primary hospital in relation to ABO blood groups system. J Med and Bioeng, 3, 74-7.
  3. Anaya-Ruiz M, Vallejo-Ruiz V, Flores-Mendoza L, Perez-Santos M (2014). Female breast cancer incidence and mortality in Mexico, 2000-2010. Asian Pac J Cancer Prev, 15, 1477-9.
  4. Bandala C, Floriano-Sanchez E, Cardenas-Rodriguez N, et al (2012). RNA expression of cytochrome P450 in Mexican women with breast cancer. Asian Pac J Cancer Prev, 13, 2647-53.
  5. Bates T, Evans T, Lagord C, Monypenny I, et al (2014). A population based study of variations in operation rates for breast cancer, of comorbidity and prognosis at diagnosis: failure to operate for early breast cancer in older women. Eur J Surg Oncol, 40, 1230-6.
  6. Cardenas-Rodriguez N, Lara-Padilla E, Bandala C, et al (2012). CYP2W1, CYP4F11 and CYP8A1 polymorphisms and interaction of CYP2W1 genotypes with risk factors in Mexican women with breast cancer. Asian Pac J Cancer Prev, 13, 837-46
  7. Chavarri-Guerra Y, Villarreal-Garza C, Liedke P, et al (2012). Breast cancer in Mexico: a growing challenge to health and the health system, Lancet Oncol, 13, 335-46.
  8. Cheang MC, Chia SK, Voduc D, Gao D, et al (2009) Ki67 index, HER2 status, and prognosis of patients with luminal B breast cancer. J Natl Cancer Inst, 101,736-50.
  9. Cuzick J, Dowsett M, Pineda S, et al (2011). Prognostic value of a combined estrogen receptor, progesterone receptor, Ki67, and human epidermal growth factor receptor 2 immunohistochemical score and comparison with the Genomic Health recurrence score in early breast cancer. J Clin Oncol, 29, 4273-8.
  10. De Azambuja E, Cardoso F, de Castro G Jr, et al (2007). Ki67 as prognostic marker in early breast cancer: a meta-analysis of published studies involving 12,155 patients. Br J Cancer, 96,1504-13.
  11. Dent R, Trudeau M, Pritchard KI, et al (2007). Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res, 13, 4429-34
  12. Direccion General de Informacion en Salud (DGIS). Base de datos de defunciones 1979-2009. Sistema Nacional de Informacion en Salud (SINAIS). Available at: .
  13. Doval DC1, Sharma A, Sinha R, et al (2015). Immunohistochemical profile of breast cancer patients at a tertiary care hospital in New Delhi, India. Asian Pac J Cancer Prev, 16, 4959-64.
  14. Elledge RM, Fuqua SA, Clark GM, et al (1993). Prognostic significance of p53 gene alterations in node-negative breast cancer. Breast Cancer Res Treat, 26, 225-35.
  15. Fitzmaurice C, Dicker D, Pain A, et al (2015). The global burden of cancer 2013. JAMA Oncol, 1, 505-27.
  16. Floriano-Sanchez E, Rodriguez NC, Bandala C, et al (2014). CYP3A4 expression in breast cancer and its association with risk factors in Mexican women. Asian Pac J Cancer Prev, 15, 3805-9.
  17. Frebourg T, Friend SH (1993). The importance of p53 gene alterations in human cancer: is there more than circumstantial evidence? J Natl Cancer Inst, 85, 1554-57.
  18. Gates MA, Xu M, Chen WY, Kraft P, Hankinson SE (2012). Wolpin BM. ABO blood group and breast cancer incidence and survival. Int J Cancer, 130, 2129-37.
  19. Hsiao YH, Siddiqui S, Man YG (2010). Dual use of a single Wilms' tumor 1 immunohistochemistry in evaluation of ovarian tumors: a preliminary study of 20 cases. J Cancer, 13, 93-7.
  20. Ji Y, Sheng L, Du X, Qiu G, Chen B, Wang X (2014). Clinicopathological variables predicting HER-2 gene status in immunohistochemistry-equivocal (2+) invasive breast cancer. J Thorac Dis, 6, 896-904.
  21. Justo N, Wilking N, Jonsson B, et al (2013). A review of breast cancer care and outcomes in Latin America. Oncologist, 18, 248-56.
  22. Keyhani E, Muhammadnejad A, Behjati F, Sirati F (2013). Pazhoomand. Angiogenesis markers in breast cancer--potentially useful tools for priority setting of anti-angiogenic agents. Asian Pac J Cancer Prev, 14, 7651-6.
  23. Kurshumliu F, Gashi-Luci L, Kadare S, Alimehmeti M and Gozalan U (2014). Classification of patients with breast cancer according to Nottingham Prognostic Index highlights significant differences in immunohistochemical marker expression. World J Surg Oncol, 12, 1-5.
  24. Lane DP (1992). Cancer. p53, guardian of the genome. Nature, 358, 15-6.
  25. Leon-Hernandez SR, Padilla EL, Algara AC, et al (2014). Relation of alcohol/tobacco use with metastasis, hormonal (estrogen and progesterone) receptor status and c-erbB2 protein in mammary ductal carcinoma. Asian Pac J Cancer Prev, 15, 5709-14.
  26. Maschio LB, Madallozo BB, Capellasso BA, et al (2014). Immunohistochemical investigation of the angiogenic proteins VEGF, HIF-1${\alpha}$ and CD34 in invasive ductal carcinoma of the breast. Acta Histochem, 116, 148-57.
  27. Nigro JM, Baker SJ, Preisinger AC, et al (1989). Mutations in the p53 gene occur in diverse human tumour types. Nature, 342, 705-8.
  28. Niikura N, Iwamoto T, Masuda S, et al (2012). Immunohistochemical Ki67 labeling index has similar proliferation predictive power to various gene signatures in breast cancer. Cancer Sci, 103, 1508-12.
  29. Ohno S, Chow LW, Sato N, et al (2013). Randomized trial of preoperative docetaxel with or without capecitabine after 4 cycles of 5-fluorouracil-epirubicin-cyclophosphamide (FEC) in early-stage breast cancer: exploratory analyses identify Ki67 as a predictive biomarker for response to neoadjuvant chemotherapy. Breast Cancer Res Treat, 142, 69-80.
  30. Perez-Santos JL, Anaya-Ruiz M (2013). Mexican breast cancer research output, 2003-2012. Asian Pac J Cancer Prev, 14, 5921-3.
  31. Petric M, Martinez S, Acevedo F, et al (2014). Correlation between Ki67 and histological grade in breast cancer patients treated with preoperative chemotherapy. Asian Pac J Cancer Prev, 15, 10277-80
  32. Pervaiz F, Rehmani S, Majid S, Anwar H (2015). Evaluation of Hormone Receptor Status (ER/PR/HER2-neu) in Breast Cancer in Pakistan. J Pak Med Assoc, 65, 747-52.
  33. Rummel S, Shriver CD, Ellsworth RE (2012). Relationships between the ABO blood group SNP rs505922 and breast cancer phenotypes: a genotype-phenotype correlation study. BMC Med Genet, 13, 41.
  34. Seshie B, Adu-Aryee NA, Dedey F, Calys-Tagoe B, Clegg-Lamptey JN (2015). A retrospective analysis of breast cancer subtype based on ER/PR and HER2 status in Ghanaian patients at the Korle Bu Teaching Hospital, Ghana. BMC Clin Pathol, 15, 14.
  35. Shui R, Yu B, Bi R, Yang F, Yang W (2015). An interobserver reproducibility analysis of Ki67 visual assessment in breast cancer. PLoS One, 10, 125131.
  36. Tirona MT, Sehgal R, Ballester O (2010). Prevention of breast cancer (part I): Epidemiology, risk factors, and risk assessment tools. Cancer Invest, 28, 743-50.
  37. Thor AD, Moore DH II, Edgerton SM, et al (1992). Accumulation of p53 tumor suppressor gene protein: an independent marker of prognosis in breast cancers. J Natl Cancer Inst, 84, 845-55.
  38. Thorlacius S, Borresen AL, Eyfjord JE (1993). Somatic p53 mutations in human breast carcinomas in an Icelandic population: a prognostic factor. Cancer Res, 53, 1637-41.
  39. Villarreal-Garza C, Aguila C, Magallanes-Hoyos MC, et al (2013). Breast cancer in young women in Latin America: an unmet, growing burden. Oncologist, 18, 1298-306.
  40. von Minckwitz G, Schmitt WD, Loibl S, Muller BM, Blohmer JU, Sinn BV, et al (2013). Ki67 measured after neoadjuvant chemotherapy for primary breast cancer. Clin Cancer Res: Off J Am Assoc Cancer Res, 19, 4521-31.
  41. Yerushalmi R, Woods R, Ravdin PM, Hayes MM, Gelmon KA (2010). Ki67 in breast cancer: prognostic and predictive potential. Lancet Oncol, 11, 174-83.
  42. Zhang BL, He N, Huang YB, Song FJ, Chen KX (2014). ABO blood groups and risk of cancer: a systematic review and meta-analysis. Asian Pac J Cancer Prev, 15, 4643-50.
  43. Zheng,YZ, Wang L, Hu X, Shao ZM (2015). Effect of tumor size on breast cancer-specific survival stratified by joint hormone receptor status in a SEER population-based study. Oncotarget, 2015.