DOI QR코드

DOI QR Code

DNA Methylation Biomarkers for Nasopharyngeal Carcinoma: Diagnostic and Prognostic Tools

  • Jiang, Wei (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University) ;
  • Cai, Rui (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University) ;
  • Chen, Qiu-Qiu (Department of Radiation Oncology, the Affiliated Hospital of Guilin Medical University)
  • Published : 2016.01.11

Abstract

Nasopharyngeal carcinoma (NPC) is a common tumor in southern China and south-eastern Asia. Effective strategies for the prevention or screening of NPC are limited. Exploring effective biomarkers for the early diagnosis and prognosis of NPC continues to be a rigorous challenge. Evidence is accumulating that DNA methylation alterations are involved in the initiation and progression of NPC. Over the past few decades, aberrant DNA methylation in single or multiple tumor suppressor genes (TSGs) in various biologic samples have been described in NPC, which potentially represents useful biomarkers. Recently, large-scale DNA methylation analysis by genome-wide methylation platform provides a new way to identify candidate DNA methylated markers of NPC. This review summarizes the published research on the diagnostic and prognostic potential biomarkers of DNA methylation for NPC and discusses the current knowledge on DNA methylation as a biomarker for the early detection and monitoring of progression of NPC.

Keywords

DNA methylation;nasopharyngeal carcinoma;biomarker;diagnosis;prognosis

Acknowledgement

Supported by : National Natural Science Foundation of China, Natural Science Foundation of Guangxi Zhuang Autonomous Region

References

  1. Cheung CC, Chung GT, Lun SW, et al (2014). miR-31 is consistently inactivated in EBV-associated nasopharyngeal carcinoma and contributes to its tumorigenesis. Mol Cancer, 13, 184. https://doi.org/10.1186/1476-4598-13-184
  2. Cheung HW, Ching YP, Nicholls JM, et al (2005). Epigenetic inactivation of CHFR in nasopharyngeal carcinoma through promoter methylation. Mol Carcinog, 43, 237-45. https://doi.org/10.1002/mc.20106
  3. Choi GC, Li J, Wang Y, et al (2014). The metalloprotease ADAMTS8 displays antitumor properties through antagonizing EGFR-MEK-ERK signaling and is silenced in carcinomas by CpG methylation. Mol Cancer Res, 12, 228-38. https://doi.org/10.1158/1541-7786.MCR-13-0195
  4. Chow LS, Lo KW, Kwong J, et al (2004). RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer, 109, 839-47. https://doi.org/10.1002/ijc.20079
  5. Dai W, Cheung AK, Ko JM, et al (2015). Comparative methylome analysis in solid tumors reveals aberrant methylation at chromosome 6p in nasopharyngeal carcinoma. Cancer Med.
  6. Delpu Y, Cordelier P, Cho WC, et al (2013). DNA methylation and cancer diagnosis. Int J Mol Sci, 14, 15029-58. https://doi.org/10.3390/ijms140715029
  7. Du C, Huang T, Sun D, et al (2011). CDH4 as a novel putative tumor suppressor gene epigenetically silenced by promoter hypermethylation in nasopharyngeal carcinoma. Cancer Lett, 309, 54-61. https://doi.org/10.1016/j.canlet.2011.05.016
  8. Esteller M (2007). Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet, 8, 286-98. https://doi.org/10.1038/nrg2005
  9. Fendri A, Khabir A, Hadri-Guiga B, et al (2010). Epigenetic alteration of the Wnt inhibitory factor-1 promoter is common and occurs in advanced stage of Tunisian nasopharyngeal carcinoma. Cancer Invest, 28, 896-903. https://doi.org/10.3109/07357907.2010.494324
  10. Fendri A, Masmoudi A, Khabir A, et al (2009). Inactivation of RASSF1A, RARbeta2 and DAP-kinase by promoter methylation correlates with lymph node metastasis in nasopharyngeal carcinoma. Cancer Biol Ther, 8, 444-51. https://doi.org/10.4161/cbt.8.5.7686
  11. He D, Zeng Q, Ren G, et al (2012). Protocadherin8 is a functional tumor suppressor frequently inactivated by promoter methylation in nasopharyngeal carcinoma. Eur J Cancer Prev, 21, 569-75. https://doi.org/10.1097/CEJ.0b013e328350b097
  12. Heng DM, Wee J, Fong KW, et al (1999). Prognostic factors in 677 patients in Singapore with nondisseminated nasopharyngeal carcinoma. Cancer, 86, 1912-20. https://doi.org/10.1002/(SICI)1097-0142(19991115)86:10<1912::AID-CNCR6>3.0.CO;2-S
  13. Hong MH, Mai HQ, Min HQ, et al (2000). A comparison of the Chinese 1992 and fifth-edition International Union Against Cancer staging systems for staging nasopharyngeal carcinoma. Cancer, 89, 242-7. https://doi.org/10.1002/1097-0142(20000715)89:2<242::AID-CNCR6>3.0.CO;2-Z
  14. Hutajulu SH, Indrasari SR, Indrawati LP, et al (2011). Epigenetic markers for early detection of nasopharyngeal carcinoma in a high risk population. Mol Cancer, 10, 48. https://doi.org/10.1186/1476-4598-10-48
  15. Jeannel D, Bouvier G, Hubert A (1999). Nasopharyngeal carcinoma: An epidemiological approach to carcinogenesis. Cancer Surveys, 33, 125-55.
  16. Jiang W, Li YQ, Liu N, et al (2014). 5-Azacytidine enhances the radiosensitivity of CNE2 and SUNE1 cells in vitro and in vivo possibly by altering DNA methylation. PLoS One, 9, 93273. https://doi.org/10.1371/journal.pone.0093273
  17. Ayadi W, Allaya N, Frikha H, et al (2014). Identification of a novel methylated gene in nasopharyngeal carcinoma: TTC40. Biomed Res Int, 2014, 691742.
  18. Ayadi W, Karray-Hakim H, Khabir A, et al (2008). Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res, 28, 2161-7.
  19. Ayan I, Kaytan E, Ayan N (2003). Childhood nasopharyngeal carcinoma: from biology to treatment. Lancet Oncol, 4, 13-21. https://doi.org/10.1016/S1470-2045(03)00956-2
  20. Baylin SB, Herman JG (2000). DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 16, 168-74. https://doi.org/10.1016/S0168-9525(99)01971-X
  21. Belinsky SA, Nikula KJ, Palmisano WA, et al (1998). Aberrant methylation of p16(INK4a) is an early event in lung cancer and a potential biomarker for early diagnosis. Proc Natl Acad Sci U S A, 95, 11891-6. https://doi.org/10.1073/pnas.95.20.11891
  22. Bruce JP, Yip K, Bratman SV, et al (2015). Nasopharyngeal Cancer: Molecular Landscape. J Clin Oncol, 33, 3346-55. https://doi.org/10.1200/JCO.2015.60.7846
  23. Challouf S, Ziadi S, Zaghdoudi R, et al (2012). Patterns of aberrant DNA hypermethylation in nasopharyngeal carcinoma in Tunisian patients. Clin Chim Acta, 413, 795-802. https://doi.org/10.1016/j.cca.2012.01.018
  24. Chang HW, Chan A, Kwong DL, et al (2003a). Detection of hypermethylated RIZ1 gene in primary tumor, mouth, and throat rinsing fluid, nasopharyngeal swab, and peripheral blood of nasopharyngeal carcinoma patient. Clin Cancer Res, 9, 1033-8.
  25. Chang HW, Chan A, Kwong DL, et al (2003b). Evaluation of hypermethylated tumor suppressor genes as tumor markers in mouth and throat rinsing fluid, nasopharyngeal swab and peripheral blood of nasopharygeal carcinoma patient. Int J Cancer, 105, 851-5. https://doi.org/10.1002/ijc.11162
  26. Chen F, Mo Y, Ding H, et al (2011). Frequent epigenetic inactivation of Myocardin in human nasopharyngeal carcinoma. Head Neck, 33, 54-9. https://doi.org/10.1002/hed.21396
  27. Chen T, Long B, Ren G, et al (2015). Protocadherin20 acts as a tumor suppressor gene: epigenetic inactivation in nasopharyngeal carcinoma. J Cell Biochem, 116, 1766-75. https://doi.org/10.1002/jcb.25135
  28. Zhang S, Li S, Gao JL (2013). Promoter methylation status of the tumor suppressor gene SOX11 is associated with cell growth and invasion in nasopharyngeal carcinoma. Cancer Cell Int, 13, 109. https://doi.org/10.1186/1475-2867-13-109
  29. Zhou W, Feng X, Li H, et al (2009). Inactivation of LARS2, located at the commonly deleted region 3p21.3, by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Acta Biochim Biophys Sin, 41, 54-62. https://doi.org/10.1093/abbs/gmn006
  30. You Y, Yang W, Wang Z, et al (2013). Promoter hypermethylation contributes to the frequent suppression of the CDK10 gene in human nasopharyngeal carcinomas. Cell Oncol, 36, 323-31. https://doi.org/10.1007/s13402-013-0137-5
  31. Zhang H, Feng X, Liu W, et al (2011). Underlying mechanisms for LTF inactivation and its functional analysis in nasopharyngeal carcinoma cell lines. J Cell Biochem, 112, 1832-43. https://doi.org/10.1002/jcb.23101
  32. Wong TS, Chang HW, Tang KC, et al (2002). High frequency of promoter hypermethylation of the death-associated proteinkinase gene in nasopharyngeal carcinoma and its detection in the peripheral blood of patients. Clin Cancer Res, 8, 433-7.
  33. Wong TS, Kwong DL, Sham JS, et al (2003a). Promoter hypermethylation of high-in-normal 1 gene in primary nasopharyngeal carcinoma. Clin Cancer Res, 9, 3042-6.
  34. Wong TS, Kwong DL, Sham JS, et al (2004). Quantitative plasma hypermethylated DNA markers of undifferentiated nasopharyngeal carcinoma. Clin Cancer Res, 10, 2401-6. https://doi.org/10.1158/1078-0432.CCR-03-0139
  35. Wong TS, Tang KC, Kwong DL, et al (2003b). Differential gene methylation in undifferentiated nasopharyngeal carcinoma. Int J Oncol, 22, 869-74.
  36. Xiao X, Zhao W, Tian F, et al (2014). Cytochrome b5 reductase 2 is a novel candidate tumor suppressor gene frequently inactivated by promoter hypermethylation in human nasopharyngeal carcinoma. Tumour Biol, 35, 3755-63. https://doi.org/10.1007/s13277-013-1497-1
  37. Yanatatsaneejit P, Chalermchai T, Kerekhanjanarong V, et al (2008). Promoter hypermethylation of CCNA1, RARRES1, and HRASLS3 in nasopharyngeal carcinoma. Oral Oncol, 44, 400-6. https://doi.org/10.1016/j.oraloncology.2007.05.008
  38. Yang X, Dai W, Kwong DL, et al (2015). Epigenetic markers for noninvasive early detection of nasopharyngeal carcinoma by methylation-sensitive high resolution melting. Int J Cancer, 136, 127-35. https://doi.org/10.1002/ijc.28973
  39. Yang Z, Lan H, Chen X, et al (2014). Molecular alterations of the WWOX gene in nasopharyngeal carcinoma. Neoplasma, 61, 170-6. https://doi.org/10.4149/neo_2014_023
  40. Yi B, Tan SX, Tang CE, et al (2009). Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma. J Cell Biochem, 106, 858-66. https://doi.org/10.1002/jcb.22051
  41. Yi HM, Li H, Peng D, et al (2006). Genetic and epigenetic alterations of LTF at 3p21.3 in nasopharyngeal carcinoma. Oncol Res, 16, 261-72. https://doi.org/10.3727/000000006783981008
  42. Ying J, Li H, Seng TJ, et al (2006). Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene, 25, 1070-80. https://doi.org/10.1038/sj.onc.1209154
  43. Ying J, Srivastava G, Hsieh WS, et al (2005). The stressresponsive gene GADD45G is a functional tumor suppressor, with its response to environmental stresses frequently disrupted epigenetically in multiple tumors. Clin Cancer Res, 11, 6442-9. https://doi.org/10.1158/1078-0432.CCR-05-0267
  44. You Y, Ma L, You M, et al (2010). TSLC1 gene silencing in cutaneous melanoma. Melanoma Res, 20, 179-83.
  45. You Y, Yang W, Qin X, et al (2015). ECRG4 acts as a tumor suppressor and as a determinant of chemotherapy resistance in human nasopharyngeal carcinoma. Cell Oncol, 38, 205-14. https://doi.org/10.1007/s13402-015-0223-y
  46. Wei WI, Sham JS (2005). Nasopharyngeal carcinoma. Lancet, 365, 2041-54. https://doi.org/10.1016/S0140-6736(05)66698-6
  47. Wong AM, Kong KL, Chen L, et al (2013). Characterization of CACNA2D3 as a putative tumor suppressor gene in the development and progression of nasopharyngeal carcinoma. Int J Cancer, 133, 2284-95. https://doi.org/10.1002/ijc.28252
  48. Peng D, Ren CP, Yi HM, et al (2006). Genetic and epigenetic alterations of DLC-1, a candidate tumor suppressor gene, in nasopharyngeal carcinoma. Acta Biochim Biophys Sin (Shanghai), 38, 349-55. https://doi.org/10.1111/j.1745-7270.2006.00164.x
  49. Ramos EA, Camargo AA, Braun K, et al (2010). Simultaneous CXCL12 and ESR1 CpG island hypermethylation correlates with poor prognosis in sporadic breast cancer. BMC Cancer, 10, 23. https://doi.org/10.1186/1471-2407-10-23
  50. Ran Y, Wu S, You Y (2011). Demethylation of E-cadherin gene in nasopharyngeal carcinoma could serve as a potential therapeutic strategy. J Biochem, 149, 49-54. https://doi.org/10.1093/jb/mvq128
  51. Razak AR, Siu LL, Liu FF, et al (2010). Nasopharyngeal carcinoma: the next challenges. Eur J Cancer, 46, 1967-78. https://doi.org/10.1016/j.ejca.2010.04.004
  52. Seng TJ, Low JS, Li H, et al (2007). The major 8p22 tumor suppressor DLC1 is frequently silenced by methylation in both endemic and sporadic nasopharyngeal, esophageal, and cervical carcinomas, and inhibits tumor cell colony formation. Oncogene, 26, 934-44. https://doi.org/10.1038/sj.onc.1209839
  53. Shu XS, Li L, Ji M, et al (2013). FEZF2, a novel 3p14 tumor suppressor gene, represses oncogene EZH2 and MDM2 expression and is frequently methylated in nasopharyngeal carcinoma. Carcinogenesis, 34, 1984-93. https://doi.org/10.1093/carcin/bgt165
  54. Sun D, Zhang Z, Van do N, et al (2007). Aberrant methylation of CDH13 gene in nasopharyngeal carcinoma could serve as a potential diagnostic biomarker. Oral Oncol, 43, 82-7. https://doi.org/10.1016/j.oraloncology.2006.01.007
  55. Sung FL, Cui Y, Hui EP, et al (2014). Silencing of hypoxiainducible tumor suppressor lysyl oxidase gene by promoter methylation activates carbonic anhydrase IX in nasopharyngeal carcinoma. Am J Cancer Res, 4, 789-800.
  56. Tao Q, Chan AT (2007). Nasopharyngeal carcinoma: molecular pathogenesis and therapeutic developments. Expert Rev Mol Med, 9, 1-24.
  57. Tian F, Yip SP, Kwong DL, et al (2013). Promoter hypermethylation of tumor suppressor genes in serum as potential biomarker for the diagnosis of nasopharyngeal carcinoma. Cancer Epidemiol, 37, 708-13. https://doi.org/10.1016/j.canep.2013.05.012
  58. Tong JH, Ng DC, Chau SL, et al (2010). Putative tumoursuppressor gene DAB2 is frequently down regulated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer, 10, 253. https://doi.org/10.1186/1471-2407-10-253
  59. Tong JH, Tsang RK, Lo KW, et al (2002). Quantitative Epstein- Barr virus DNA analysis and detection of gene promoter hypermethylation in nasopharyngeal (NP) brushing samples from patients with NP carcinoma. Clin Cancer Res, 8, 2612-9.
  60. Tsao SW, Liu Y, Wang X, et al (2003). The association of E-cadherin expression and the methylation status of the E-cadherin gene in nasopharyngeal carcinoma cells. Eur J Cancer, 39, 524-31. https://doi.org/10.1016/S0959-8049(02)00494-X
  61. Wang S, Xiao X, Zhou X, et al (2010). TFPI-2 is a putative tumor suppressor gene frequently inactivated by promoter hypermethylation in nasopharyngeal carcinoma. BMC Cancer, 10, 617. https://doi.org/10.1186/1471-2407-10-617
  62. Wang S, Zhang R, Claret FX, et al (2014). Involvement of microRNA-24 and DNA methylation in resistance of nasopharyngeal carcinoma to ionizing radiation. Mol Cancer Ther, 13, 3163-74. https://doi.org/10.1158/1535-7163.MCT-14-0317
  63. Li W, Li X, Wang W, et al (2011b). NOR1 is an HSF1- and NRF1-regulated putative tumor suppressor inactivated by promoter hypermethylation in nasopharyngeal carcinoma. Carcinogenesis, 32, 1305-14. https://doi.org/10.1093/carcin/bgr174
  64. Li YQ, Ren XY, He QM, et al (2015b). MiR-34c suppresses tumor growth and metastasis in nasopharyngeal carcinoma by targeting MET. Cell Death Dis, 6, 1618. https://doi.org/10.1038/cddis.2014.582
  65. Lin YC, You L, Xu Z, et al (2006). Wnt signaling activation and WIF-1 silencing in nasopharyngeal cancer cell lines. Biochem Biophys Res Commun, 341, 635-40. https://doi.org/10.1016/j.bbrc.2005.12.220
  66. Liu H, Zhang L, Niu Z, et al (2008). Promoter methylation inhibits BRD7 expression in human nasopharyngeal carcinoma cells. BMC Cancer, 8, 253. https://doi.org/10.1186/1471-2407-8-253
  67. Liu XQ, Chen HK, Zhang XS, et al (2003). Alterations of BLU, a candidate tumor suppressor gene on chromosome 3p21.3, in human nasopharyngeal carcinoma. Int J Cancer, 106, 60-5. https://doi.org/10.1002/ijc.11166
  68. Lo KW, Cheung ST, Leung SF, et al (1996). Hypermethylation of the p16 gene in nasopharyngeal carcinoma. Cancer Res, 56, 2721-5.
  69. Lo KW, Huang DP (2002). Genetic and epigenetic changes in nasopharyngeal carcinoma. Semin Cancer Biol, 12, 451-62. https://doi.org/10.1016/S1044579X02000883
  70. Lo KW, Kwong J, Hui AB, et al (2001). High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res, 61, 3877-81.
  71. Lo KW, To KF, Huang DP (2004). Focus on nasopharyngeal carcinoma. Cancer Cell, 5, 423-8. https://doi.org/10.1016/S1535-6108(04)00119-9
  72. Lo KW, Tsang YS, Kwong J, et al (2002). Promoter hypermethylation of the EDNRB gene in nasopharyngeal carcinoma. Int J Cancer, 98, 651-5. https://doi.org/10.1002/ijc.10271
  73. Loyo M, Brait M, Kim MS, et al (2011). A survey of methylated candidate tumor suppressor genes in nasopharyngeal carcinoma. Int J Cancer, 128, 1393-403. https://doi.org/10.1002/ijc.25443
  74. Lujambio A, Calin GA, Villanueva A, et al (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A, 105, 13556-61. https://doi.org/10.1073/pnas.0803055105
  75. Luo FY, Xiao S, Liu ZH, et al (2015). Kank1 reexpression induced by 5-Aza-2'-deoxycytidine suppresses nasopharyngeal carcinoma cell proliferation and promotes apoptosis. Int J Clin Exp Pathol, 8, 1658-65.
  76. McDermott AL, Dutt SN, Watkinson JC (2001). The aetiology of nasopharyngeal carcinoma. Clin Otolaryngol Allied Sci, 26, 82-92. https://doi.org/10.1046/j.1365-2273.2001.00449.x
  77. Mittag F, Kuester D, Vieth M, et al (2006). DAPK promotor methylation is an early event in colorectal carcinogenesis. Cancer Lett, 240, 69-75. https://doi.org/10.1016/j.canlet.2005.08.034
  78. Mo Y, Midorikawa K, Zhang Z, et al (2012). Promoter hypermethylation of Ras-related GTPase gene RRAD inactivates a tumor suppressor function in nasopharyngeal carcinoma. Cancer Lett, 323, 147-54. https://doi.org/10.1016/j.canlet.2012.03.042
  79. Nawaz I, Hu LF, Du ZM, et al (2015a). Integrin alpha9 gene promoter is hypermethylated and downregulated in nasopharyngeal carcinoma. Oncotarget, 6, 31493-507. https://doi.org/10.18632/oncotarget.5154
  80. Nawaz I, Moumad K, Martorelli D, et al (2015b). Detection of nasopharyngeal carcinoma in Morocco (North Africa) using a multiplex methylation-specific PCR biomarker assay. Clin Epigenetics, 7, 89. https://doi.org/10.1186/s13148-015-0119-8
  81. Jiang W, Liu N, Chen XZ, et al (2015). Genome-wide Identification of a Methylation Gene Panel as a Prognostic Biomarker in Nasopharyngeal Carcinoma. Mol Cancer Ther.
  82. Jones PA (1996). DNA methylation errors and cancer. Cancer Res, 56, 2463-7.
  83. Koga T, Takeshita M, Yano T, et al (2011). CHFR hypermethylation and EGFR mutation are mutually exclusive and exhibit contrastive clinical backgrounds and outcomes in non-small cell lung cancer. Int J Cancer, 128, 1009-17. https://doi.org/10.1002/ijc.25447
  84. Kwong J, Lo KW, Chow LS, et al (2005a). Silencing of the retinoid response gene TIG1 by promoter hypermethylation in nasopharyngeal carcinoma. Int J Cancer, 113, 386-92. https://doi.org/10.1002/ijc.20593
  85. Kwong J, Lo KW, Chow LS, et al (2005b). Epigenetic silencing of cellular retinol-binding proteins in nasopharyngeal carcinoma. Neoplasia, 7, 67-74. https://doi.org/10.1593/neo.04370
  86. Kwong J, Lo KW, To KF, et al (2002). Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res, 8, 131-7.
  87. Lee KY, Geng H, Ng KM, et al (2008). Epigenetic disruption of interferon-gamma response through silencing the tumor suppressor interferon regulatory factor 8 in nasopharyngeal, esophageal and multiple other carcinomas. Oncogene, 27, 5267-76. https://doi.org/10.1038/onc.2008.147
  88. Li HP, Huang HY, Lai YR, et al (2014a). Silencing of miRNA-148a by hypermethylation activates the integrinmediated signaling pathway in nasopharyngeal carcinoma. Oncotarget, 5, 7610-24. https://doi.org/10.18632/oncotarget.2282
  89. Li J, Gong P, Lyu X, et al (2014b). Aberrant CpG island methylation of PTEN is an early event in nasopharyngeal carcinoma and a potential diagnostic biomarker. Oncol Rep, 31, 2206-12. https://doi.org/10.3892/or.2014.3061
  90. Li L, Tao Q, Jin H, et al (2010). The tumor suppressor UCHL1 forms a complex with p53/MDM2/ARF to promote p53 signaling and is frequently silenced in nasopharyngeal carcinoma. Clin Cancer Res, 16, 2949-58. https://doi.org/10.1158/1078-0432.CCR-09-3178
  91. Li L, Ying J, Tong X, et al (2014c). Epigenetic identification of receptor tyrosine kinase-like orphan receptor 2 as a functional tumor suppressor inhibiting beta-catenin and AKT signaling but frequently methylated in common carcinomas. Cell Mol Life Sci, 71, 2179-92. https://doi.org/10.1007/s00018-013-1485-z
  92. Li L, Zhang Y, Fan Y, et al (2015a). Characterization of the nasopharyngeal carcinoma methylome identifies aberrant disruption of key signaling pathways and methylated tumor suppressor genes. Epigenomics, 7, 155-73. https://doi.org/10.2217/epi.14.79
  93. Li LL, Shu XS, Wang ZH, et al (2011a). Epigenetic disruption of cell signaling in nasopharyngeal carcinoma. Chin J Cancer, 30, 231-9. https://doi.org/10.5732/cjc.011.10080

Cited by

  1. Epigenetic mediated zinc finger protein 671 downregulation promotes cell proliferation and tumorigenicity in nasopharyngeal carcinoma by inhibiting cell cycle arrest vol.36, pp.1, 2017, https://doi.org/10.1186/s13046-017-0621-2
  2. Metabolic Phase I (CYPs) and Phase II (GSTs) Gene Polymorphisms and Their Interaction with Environmental Factors in Nasopharyngeal Cancer from the Ethnic Population of Northeast India pp.1532-2807, 2017, https://doi.org/10.1007/s12253-017-0309-0
  3. Inactivation of the tight junction gene CLDN11 by aberrant hypermethylation modulates tubulins polymerization and promotes cell migration in nasopharyngeal carcinoma vol.37, pp.1, 2018, https://doi.org/10.1186/s13046-018-0754-y