DOI QR코드

DOI QR Code

Potential Roles of Protease Inhibitors in Cancer Progression

  • Yang, Peng (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University) ;
  • Li, Zhuo-Yu (Institute of Biotechnology, Key Laboratory of Chemical Biology and Molecular Engineering of National Ministry of Education, Shanxi University) ;
  • Li, Han-Qing (College of Life Science, Shanxi University)
  • Published : 2016.01.11

Abstract

Proteases are important molecules that are involved in many key physiological processes. Protease signaling pathways are strictly controlled, and disorders in protease activity can result in pathological changes such as cardiovascular and inflammatory diseases, cancer and neurological disorders. Many proteases have been associated with increasing tumor metastasis in various human cancers, suggesting important functional roles in the metastatic process because of their ability to degrade the extracellular matrix barrier. Proteases are also capable of cleaving non-extracellular matrix molecules. Inhibitors of proteases to some extent can reduce invasion and metastasis of cancer cells, and slow down cancer progression. In this review, we focus on the role of a few proteases and their inhibitors in tumors as a basis for cancer prognostication and therapy.

Keywords

Protease;protease inhibitor;tumor metastasis;targeted cancer therapy

Acknowledgement

Supported by : National Natural Science Foundation of China

References

  1. Alitalo A, Detmar M (2012). Interaction of tumor cells and lymphatic vessels in cancer progression. Oncogene, 31, 4499-508. https://doi.org/10.1038/onc.2011.602
  2. Behm B, Babilas P, Landthaler M, et al (2012). Cytokines, chemokines and growth factors in wound healing. J Eur Acad Dermatol Venereol, 26, 812-20. https://doi.org/10.1111/j.1468-3083.2011.04415.x
  3. Campodonico PB, de Kier Joffe ED, Urtreger AJ, et al (2010). The neural cell adhesion molecule is involved in the metastatic capacity in a murine model of lung cancer. Mol Carcinog, 49, 386-97.
  4. Cao XL, Xu RJ, Zheng YY, et al (2011). Expression of type IV collagen, metalloproteinase-2, metalloproteinase-9 and tissue inhibitor of metalloproteinase-1 in laryngeal squamous cell carcinomas. Asian Pac J Cancer Prev, 12, 3245-9.
  5. Chernov AV, Strongin AY (2011). Epigenetic regulation of matrix metalloproteinases and their collagen substrates in cancer. Biomol Concepts, 2, 135-47.
  6. Coutinho MF, Prata MJ, Alves S (2012). A shortcut to the lysosome: the mannose-6-phosphate-independent pathway. Mol Genet Metab, 107, 257-66. https://doi.org/10.1016/j.ymgme.2012.07.012
  7. Deryugina EI, Quigley JP (2012). Cell surface remodeling by plasmin: a new function for an old enzyme. J Biomed Biotechnol, 2012, 564259.
  8. Elie BT, Gocheva V, Shree T, et al (2010). Identification and preclinical testing of a reversible cathepsin protease inhibitor reveals anti-tumor efficacy in a pancreatic cancer model. Biochimie, 92, 1618-24. https://doi.org/10.1016/j.biochi.2010.04.023
  9. Fang JH, Zhou HC, Zeng C, et al (2011). MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. Hepatology, 54, 1729-40. https://doi.org/10.1002/hep.24577
  10. Fonovic M, Turk B (2014a). Cysteine cathepsins and extracellular matrix degradation. Biochim Biophys Acta, 1840, 2560-70. https://doi.org/10.1016/j.bbagen.2014.03.017
  11. Fonovic M, Turk B (2014b). Cysteine cathepsins and their potential in clinical therapy and biomarker discovery. Proteomics Clin Appl, 8, 416-26. https://doi.org/10.1002/prca.201300085
  12. Fricker SP (2010). Cysteine proteases as targets for metal-based drugs. Metallomics, 2, 366-77. https://doi.org/10.1039/b924677k
  13. Gaffney J, Solomonov I, Zehorai E, et al (2015). Multilevel regulation of matrix metalloproteinases in tissue homeostasis indicates their molecular specificity in vivo. Matrix Biol.
  14. Gearing AJ, Beckett P, Christodoulou M, et al (1994). Processing of tumour necrosis factor-alpha precursor by metalloproteinases. Nature, 370, 555-7. https://doi.org/10.1038/370555a0
  15. Gialeli C, Theocharis AD, Karamanos NK (2011). Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J, 278, 16-27. https://doi.org/10.1111/j.1742-4658.2010.07919.x
  16. Gocheva V, Joyce JA (2007). Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle, 6, 60-4. https://doi.org/10.4161/cc.6.1.3669
  17. Gocheva V, Zeng W, Ke D, et al (2006). Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev, 20, 543-56. https://doi.org/10.1101/gad.1407406
  18. Goulet B, Sansregret L, Leduy L, et al (2007). Increased expression and activity of nuclear cathepsin L in cancer cells suggests a novel mechanism of cell transformation. Mol Cancer Res, 5, 899-907. https://doi.org/10.1158/1541-7786.MCR-07-0160
  19. Gupta SC, Kim JH, Prasad S, et al (2010). Regulation of survival, proliferation, invasion, angiogenesis, and metastasis of tumor cells through modulation of inflammatory pathways by nutraceuticals. Cancer Metastasis Rev, 29, 405-34. https://doi.org/10.1007/s10555-010-9235-2
  20. Hanahan D, Weinberg RA (2011). Hallmarks of cancer: the next generation. Cell, 144, 646-74. https://doi.org/10.1016/j.cell.2011.02.013
  21. Hart JR, Liao L, Yates JR, 3rd, et al (2011). Essential role of Stat3 in PI3K-induced oncogenic transformation. Proc Natl Acad Sci U S A, 108, 13247-52. https://doi.org/10.1073/pnas.1110486108
  22. Hildenbrand R, Allgayer H, Marx A, et al (2010). Modulators of the urokinase-type plasminogen activation system for cancer. Expert Opin Investig Drugs, 19, 641-52. https://doi.org/10.1517/13543781003767400
  23. Hildenbrand R, Schaaf A, Dorn-Beineke A, et al (2009). Tumor stroma is the predominant uPA-, uPAR-, PAI-1-expressing tissue in human breast cancer: prognostic impact. Histol Histopathol, 24, 869-77.
  24. Hsieh MJ, Chen KS, Chiou HL, et al (2010). Carbonic anhydrase XII promotes invasion and migration ability of MDAMB- 231 breast cancer cells through the p38 MAPK signaling pathway. Eur J Cell Biol, 89, 598-606. https://doi.org/10.1016/j.ejcb.2010.03.004
  25. Jankun J, Al-Senaidy A, Skrzypczak-Jankun E (2012). Can inactivators of plasminogen activator inhibitor alleviate the burden of obesity and diabetes? (Review). Int J Mol Med, 29, 3-11.
  26. Jedeszko C, Sloane BF (2004). Cysteine cathepsins in human cancer. Biol Chem, 385, 1017-27.
  27. Jensen JK, Malmendal A, Schiott B, et al (2006). Inhibition of plasminogen activator inhibitor-1 binding to endocytosis receptors of the low-density-lipoprotein receptor family by a peptide isolated from a phage display library. Biochem J, 399, 387-96. https://doi.org/10.1042/BJ20060533
  28. Jones AL, Hulett MD, Altin JG, et al (2004). Plasminogen is tethered with high affinity to the cell surface by the plasma protein, histidine-rich glycoprotein. J Biol Chem, 279, 38267-76. https://doi.org/10.1074/jbc.M406027200
  29. Joyce JA (2005). Therapeutic targeting of the tumor microenvironment. Cancer Cell, 7, 513-20. https://doi.org/10.1016/j.ccr.2005.05.024
  30. Joyce JA, Baruch A, Chehade K, et al (2004). Cathepsin cysteine proteases are effectors of invasive growth and angiogenesis during multistage tumorigenesis. Cancer Cell, 5, 443-53. https://doi.org/10.1016/S1535-6108(04)00111-4
  31. Kacsinta AD, Rubenstein CS, Sroka IC, et al (2014). Intracellular modifiers of integrin alpha 6p production in aggressive prostate and breast cancer cell lines. Biochem Biophys Res Commun, 454, 335-40. https://doi.org/10.1016/j.bbrc.2014.10.073
  32. Kitamura T, Taketo MM (2007). Keeping out the bad guys: gateway to cellular target therapy. Cancer Res, 67, 10099-102. https://doi.org/10.1158/0008-5472.CAN-07-2100
  33. Laurent-Matha V, Huesgen PF, Masson O, et al (2012). Proteolysis of cystatin C by cathepsin D in the breast cancer microenvironment. Faseb J, 26, 5172-81. https://doi.org/10.1096/fj.12-205229
  34. Li Z, Zhang L, Zhao Y, et al.(2013). Cell surface GRP78 facilitates colorectal cancer cell migration and invasion. IN J Biochem Cell Biol, 45, 987-94. https://doi.org/10.1016/j.biocel.2013.02.002
  35. Lu P, Weaver VM, Werb Z (2012). The extracellular matrix: a dynamic niche in cancer progression. J Cell Biol, 196, 395-406. https://doi.org/10.1083/jcb.201102147
  36. Mohamed MM, Sloane BF (2006). Cysteine cathepsins: multifunctional enzymes in cancer. Nat Rev Cancer, 6, 764-75. https://doi.org/10.1038/nrc1949
  37. Monsouvanh A, Proungvitaya T, Limpaiboon T, et al (2014). Serum cathepsin B to cystatin C ratio as a potential marker for the diagnosis of cholangiocarcinoma. Asian Pac J Cancer Prev, 15, 9511-5. https://doi.org/10.7314/APJCP.2014.15.21.9511
  38. Murray IA, Krishnegowda G, DiNatale BC, et al (2010). Development of a selective modulator of aryl hydrocarbon (Ah) receptor activity that exhibits anti-inflammatory properties. Chem Res Toxicol, 23, 955-66. https://doi.org/10.1021/tx100045h
  39. Navab R, Mort JS, Brodt P (1997). Inhibition of carcinoma cell invasion and liver metastases formation by the cysteine proteinase inhibitor E-64. Clin Exp Metastasis, 15, 121-9. https://doi.org/10.1023/A:1018496625936
  40. Nissinen L, Kahari VM (2014). Matrix metalloproteinases in inflammation. Biochim Biophys Acta, 1840, 2571-80. https://doi.org/10.1016/j.bbagen.2014.03.007
  41. Oh CK, Ariue B, Alban RF, et al (2002). PAI-1 promotes extracellular matrix deposition in the airways of a murine asthma model. Biochem Biophys Res Commun, 294, 1155-60. https://doi.org/10.1016/S0006-291X(02)00577-6
  42. Quail DF, Joyce JA (2013). Microenvironmental regulation of tumor progression and metastasis. Nat Med, 19, 1423-37. https://doi.org/10.1038/nm.3394
  43. Rakashanda S, Qazi AK, Majeed R, et al (2013). Antiproliferative activity of Lavatera cashmeriana- protease inhibitors towards human cancer cells. Asian Pac J Cancer Prev, 14, 3975-8. https://doi.org/10.7314/APJCP.2013.14.6.3975
  44. Revach OY, Geiger B (2014). The interplay between the proteolytic, invasive, and adhesive domains of invadopodia and their roles in cancer invasion. Cell Adh Migr, 8, 215-25. https://doi.org/10.4161/cam.27842
  45. Rothberg JM, Bailey KM, Wojtkowiak JW, et al (2013). Acid-mediated tumor proteolysis: contribution of cysteine cathepsins. Neoplasia, 15, 1125-37. https://doi.org/10.1593/neo.13946
  46. Salpeter SJ, Pozniak Y, Merquiol E, et al (2015). A novel cysteine cathepsin inhibitor yields macrophage cell death and mammary tumor regression. Oncogene.
  47. Sanman LE, Bogyo M (2014). Activity-based profiling of proteases. Annu Rev Biochem, 83, 249-73. https://doi.org/10.1146/annurev-biochem-060713-035352
  48. Shay G, Lynch CC, Fingleton B (2015). Moving targets: Emerging roles for MMPs in cancer progression and metastasis. Matrix Biol.
  49. Shuman Moss LA, Jensen-Taubman S, Stetler-Stevenson WG (2012). Matrix metalloproteinases: changing roles in tumor progression and metastasis. Am J Pathol, 181, 1895-9. https://doi.org/10.1016/j.ajpath.2012.08.044
  50. Strojnik T, Kavalar R, Trinkaus M, et al (2005). Cathepsin L in glioma progression: comparison with cathepsin B. Cancer Detect Prev, 29, 448-55. https://doi.org/10.1016/j.cdp.2005.07.006
  51. Turk V, Stoka V, Vasiljeva O, et al (2012). Cysteine cathepsins: from structure, function and regulation to new frontiers. Biochim Biophys Acta, 1824, 68-88. https://doi.org/10.1016/j.bbapap.2011.10.002
  52. van Horssen R, Buccione R, Willemse M, et al (2013). Cancer cell metabolism regulates extracellular matrix degradation by invadopodia. Eur J Cell Biol, 92, 113-21. https://doi.org/10.1016/j.ejcb.2012.11.003
  53. Vazquez R, Astorgues-Xerri L, Bekradda M, et al (2015). Fsn0503h antibody-mediated blockade of cathepsin S as a potential therapeutic strategy for the treatment of solid tumors. Biochimie, 108, 101-7. https://doi.org/10.1016/j.biochi.2014.10.025
  54. Wen J, Nikitakis NG, Chaisuparat R, et al (2011). Secretory leukocyte protease inhibitor (SLPI) expression and tumor invasion in oral squamous cell carcinoma. Am J Pathol, 178, 2866-78. https://doi.org/10.1016/j.ajpath.2011.02.017
  55. Wieczerzak E, Drabik P, Lankiewicz L, et al (2002). Azapeptides structurally based upon inhibitory sites of cystatins as potent and selective inhibitors of cysteine proteases. J Med Chem, 45, 4202-11. https://doi.org/10.1021/jm020850k
  56. Yadav L, Puri N, Rastogi V, et al (2014). Matrix metalloproteinases and cancer - roles in threat and therapy. Asian Pac J Cancer Prev, 15, 1085-91. https://doi.org/10.7314/APJCP.2014.15.3.1085
  57. Yan C, Boyd DD (2007). Regulation of matrix metalloproteinase gene expression. J Cell Physiol, 211, 19-26. https://doi.org/10.1002/jcp.20948
  58. Yang P, Li Z, Fu R, et al (2014). Pyruvate kinase M2 facilitates colon cancer cell migration via the modulation of STAT3 signalling. Cell Signal, 26, 1853-62. https://doi.org/10.1016/j.cellsig.2014.03.020
  59. Yepes M, Roussel BD, Ali C, et al (2009). Tissue-type plasminogen activator in the ischemic brain: more than a thrombolytic. Trends Neurosci, 32, 48-55. https://doi.org/10.1016/j.tins.2008.09.006

Cited by

  1. HIV-protease inhibitors for the treatment of cancer: Repositioning HIV protease inhibitors while developing more potent NO-hybridized derivatives? vol.140, pp.8, 2017, https://doi.org/10.1002/ijc.30529
  2. Salivary protease spectrum biomarkers of oral cancer vol.11, pp.1, 2019, https://doi.org/10.1038/s41368-018-0032-z