DOI QR코드

DOI QR Code

β-Adrenergic Receptors : New Target in Breast Cancer

  • Wang, Ting (Department of Internal Medical Oncology, Harbin Medical University Cancer, Hospital) ;
  • Li, Yu (Bacteriologic Laboratory, Harbin Center for Disease Control and Prevention) ;
  • Lu, Hai-Ling (Department of Internal Medical Oncology, Harbin Medical University Cancer, Hospital) ;
  • Meng, Qing-Wei (Department of Internal Medical Oncology, Harbin Medical University Cancer, Hospital) ;
  • Cai, Li (Department of Internal Medical Oncology, Harbin Medical University Cancer, Hospital) ;
  • Chen, Xue-Song (Department of Internal Medical Oncology, Harbin Medical University Cancer, Hospital)
  • Published : 2016.01.11

Abstract

Background: Preclinical studies have demonstrated that ${\beta}$-adrenergic receptor antagonists could improve the prognosis of breast cancer. However, the conclusions of clinical and pharmacoepidemiological studies have been inconsistent. This review was conducted to re-assess the relationship between beta-adrenoceptor blockers and breast cancer prognosis. Materials and Methods: The literature was searched from PubMed, EMBASE and Web of Nature (Thompson Reuters) databases through using key terms, such as breast cancer and beta-adrenoceptor blockers. Results: Ten publications met the inclusion criteria. Six suggested that receiving beta-adrenoceptor blockers reduced the risk of breast cancer-specific mortality, and three of them had statistical significance (hazard ratio (HR)=0.42; 95% CI=0.18-0.97; p=0.042). Two studies reported that risk of recurrence and distant metastasis (DM) were both significantly reduced. One study demonstrated that the risk of relapse-free survival (RFS) was raised significantly with beta-blockers (BBS) (HR= 0.30; 95% CI=0.10-0.87; p=0.027). One reported longer disease-free interval (Log Rank (LR)=6.658; p=0.011) in BBS users, but there was no significant association between overall survival (OS) and BBS (HR= 0.35; 95% CI=0.12-1.0; p=0.05) in five studies. Conclusions: Through careful consideration, it is suggested that beta-adrenoceptor blockers use may be associated with improved prognosis in breast cancer patients. Nevertheless, larger size studies are needed to further explore the relationship between beta-blocker drug use and breast cancer prognosis.

Keywords

Beta-adrenoceptor blockers;breast cancer;prognosis;systematic review

Acknowledgement

Supported by : Heilongjiang Provincial Department of Education, National Natural Science Foundation

References

  1. World Health Organization (WHO) (2014): Breast cancer: prevention and control. Retrieved from .
  2. Akbar S1, Alsharidah MS (2014). Are beta blockers new potential anticancer agents? Asian Pac J Cancer Prev, 15, 9567-74. https://doi.org/10.7314/APJCP.2014.15.22.9567
  3. Akechi T1, Okuyama T, Endo C, et al (2011). Patient's perceived need and psychological distress and/or quality of life in ambulatory breast cancer patients in Japan. Psychooncol, 20, 497-505. https://doi.org/10.1002/pon.1757
  4. Anil K. Sood, Guillermo N. Armaiz-Pena, et al (2010). Adrenergoc modulation of adhesion kinase protects human ovarian cells from anoikis. J Clin Invest, 120, 1515-23. https://doi.org/10.1172/JCI40802
  5. Antoni MH, Lutgendorf SK, Cole SW, et al (2006). The influence of bio-behavioural factors on tumour biology: Pathways and mechanisms. Nat Rev Cancer, 6, 240-8. https://doi.org/10.1038/nrc1820
  6. Armaiz-Pena GN, Lutgendorf SK, Cole SW, Sood AK (2009). Neuroendocrine modulation of cancer progression. Brain Behav Immun, 23, 10-5. https://doi.org/10.1016/j.bbi.2008.06.007
  7. Avraham R, Benish M, Inbar S, et al (2010). Synergism between immunostimulation and prevention of surgery-induced immune suppression: an approach to reduce post-operative tumor progression. Brain Behav Immun, 24, 952-8. https://doi.org/10.1016/j.bbi.2010.03.010
  8. Barron TI, Connolly RM, Sharp L, Bennett K, Visvanathan K (2011). Beta blockers and breast cancer mortality: a population based study. J Clin Oncol, 29, 2635-44. https://doi.org/10.1200/JCO.2010.33.5422
  9. Barron TI, Sharp L, Visvanathan K (2012). Beta-adrenergic blocking drugs in breast cancer: a perspective review. Ther Adv Med Oncol, 4, 113-25. https://doi.org/10.1177/1758834012439738
  10. Benish M, Bartal I, Goldfarb Y, et al (2008). Perioperative use of beta-blockers and COX-2 inhibitors may improve immune competence and reduce the risk of tumor metastasis. Ann Surg Oncol, 15, 2042-52. https://doi.org/10.1245/s10434-008-9890-5
  11. Botteri E, Munzone E, Rotmensz N, et al (2013). Therapeutic effect of $\beta$-blockers in triple-negative breast cancerpostmenopausal women. Breast Cancer Res Treat, 140, 567-75. https://doi.org/10.1007/s10549-013-2654-3
  12. Cakir Y, Plummer HK 3rd, Tithof PK, Schuller HM (2002). Betaadrenergic and arachidonic acid-mediated growth regulation of human breast cancer cell lines. Int J Oncol, 21, 153-7.
  13. Cardwell CR, Coleman HG, Murray LJ, et al (2013). Betablocker usage and breast cancer survival: a nested casecontrol study within a UK clinical practice research datalink cohort. Int J Epidemiol, 42, 1852-61. https://doi.org/10.1093/ije/dyt196
  14. Carie AE, Sebti SM (2007). A chemical biology approach identifies a beta-2 adrenergic receptor agonist that causes human tumor regression by blocking the Raf-1/ Mek-1/Erk1/2 pathway. Oncogene, 26, 3777-88. https://doi.org/10.1038/sj.onc.1210172
  15. Chakroborty D, Sarkar C, Basu B, Dasgupta PS, Basu S (2009). Catecholamines regulate tumor angiogenesis. Cancer Res, 69, 3727-30. https://doi.org/10.1158/0008-5472.CAN-08-4289
  16. De Bruijn KM, Arends LR, Hansen BE, et al (2013). Systematic review and meta-analysis of the association between diabetes mellitus and incidence and mortality in breast and colorectal cancer. Br J Surg, 100, 1421-9. https://doi.org/10.1002/bjs.9229
  17. Diaz ES, Karlan BY, Li AJ (2012). Impact of beta blockers on epithelial ovarian cancer survival. Gynecol Oncol, 127, 375-8. https://doi.org/10.1016/j.ygyno.2012.07.102
  18. Drell TL 4th, Joseph J, Lang K, et al (2003). Effects of neurotransmitters on the chemokinesis and chemotaxis of MDA-MB-468 human breast carcinoma cells. Breast Cancer Res Treat, 80, 63-70. https://doi.org/10.1023/A:1024491219366
  19. Entschladen F, Drell TL 4th, Lang K, Joseph J, Zaenker KS (2004). Tumour-cell migration, invasion, and metastasis: Navigation by neurotransmitters. Lancet Oncol, 5, 254-8. https://doi.org/10.1016/S1470-2045(04)01431-7
  20. Fidler IJ (2003). The pathogenesis of cancer metastasis: The 'seed and soil' hypothesis revisited. Nat Rev Cancer, 3, 453-8. https://doi.org/10.1038/nrc1098
  21. Ganz PA, Habel LA, Weltzien EK, Caan BJ, Cole SW (2011). Examining the Influence of Beta Blockers and ACE Inhibitors on the Risk for Breast Cancer Recurrence: Results from the LACE Cohort. Breast Cancer Res Treat, 129, 549-56. https://doi.org/10.1007/s10549-011-1505-3
  22. Grytli HH, Fagerland MW, Fossa SD, Tasken KA, Haheim LL (2013). Use of beta-blockers is associated with prostate cancer-specific survival in prostate cancer patients on androgen deprivation therapy. Prostate, 73, 250-60. https://doi.org/10.1002/pros.22564
  23. Grytli HH, Fagerland MW, Fossa SD, Tasken KA (2014). Association between use of $\beta$-blockers and prostate cancerspecific survival: a cohort study of 3561 prostate cancer patients with high-risk or metastatic disease. Eur Uro, 65, 635-41. https://doi.org/10.1016/j.eururo.2013.01.007
  24. Holmes MD, Hankinson SE, Feskanich D, Chen WY (2013). Beta blockers and angiotensin-converting enzyme inhibitors' purported benefit on breast cancer survival may be explained by aspirin use. Breast Cancer Res Treat, 139, 507-13. https://doi.org/10.1007/s10549-013-2553-7
  25. Holmes S, Griffith EJ, Musto G, Minuk GY (2013). Antihypertensive medications and survival in patients with cancer: A population-based retrospective cohort study. Cancer Epidemiol, 37, 881-5. https://doi.org/10.1016/j.canep.2013.09.001
  26. Huber JC1, Schneeberger C, Tempfer CB (2002). Genetic modelling of the estrogen metabolism as a risk factor of hormone-dependent disorders. Maturitas, 42, 1-12. https://doi.org/10.1016/S0378-5122(02)00021-X
  27. Landen CN Jr, Lin YG, Armaiz Pena GN, et al (2007). Neuroendocrine modulation of signal transducer and activator of transcription-3 in ovarian cancer. Cancer Res, 67, 10389-96. https://doi.org/10.1158/0008-5472.CAN-07-0858
  28. Lang K, Drell TL 4th, Lindecke A, et al (2004). Induction of a metastatogenic tumor cell type by neurotransmitters and its pharmacological inhibition by established drugs. Int J Cancer, 112, 231-8. https://doi.org/10.1002/ijc.20410
  29. Liao S1, Li J, Wei W, Wang L, et al (2011). Association between diabetes mellitus and breast cancer risk: a meta-analysis of the literature. Asian Pac J Cancer Prev, 12, 1061-5.
  30. Lutgendorf SK, Cole S, Costanzo E, et al (2003). Stress-related mediators stimulate vascular endothelial growth factor secretion by two ovarian cancer cell lines. Clin Cancer Res, 9, 4514-21.
  31. Madden, K.S., Szpunar, M.J. and Brown, E.B (2011). $\beta$-Adrenergic receptors ($\beta$-AR) regulate VEGF and IL-6 production by divergent pathways in high $\beta$-AR-expressing breast cancer cell lines. Breast Cancer Res Treat, 130, 747-58. https://doi.org/10.1007/s10549-011-1348-y
  32. Masur K, Niggemann B, Zanker KS, Entschladen F (2001). Norepinephrine-induced migration of SW 480 colon carcinoma cells is inhibited by beta-blockers. Cancer Res, 61, 2866-9.
  33. Melamed R, Rosenne E, Shakhar K, et al (2005). Marginating pulmonary-NK activity and resistance to experimental tumor metastasis: suppression by surgery and the prophylactic use of a beta-adrenergic antagonist and a prostaglandin synthesis inhibitor. Brain Behav Immun, 19, 114-26. https://doi.org/10.1016/j.bbi.2004.07.004
  34. Melhem-Bertrandt A, Chavez-Macgregor M, Lei X, et al (2011). Beta-blocker use is associated with improved relapse-free survival in patients with triple-negative breast cancer. J Clin Oncol, 29, 2645-52. https://doi.org/10.1200/JCO.2010.33.4441
  35. Ortiz-Mendoza CM, de-la-Fuente-Vera TA, Perez-Chavez E (2014). Metabolic syndrome in Mexican women survivors of breast cancer: a pilot study at a general hospital. Med Arch, 68, 19-21. https://doi.org/10.5455/medarh.2014.68.19-21
  36. Palm D, Lang K, Niggemann B, et al (2006). The norepinephrinedriven metastasis development of PC-3 human prostate cancer cells in BALB/c nude mice is inhibited by betablockers. Int J Cancer, 118, 2744-9. https://doi.org/10.1002/ijc.21723
  37. Park SY, Kang JH, Jeong KJ, et al (2011). Norepinephrine induces VEGF expression and angiogenesis by a hypoxiainducible factor-1 $\alpha$ protein-dependent mechanism. Int J Cancer, 128, 2306-16. https://doi.org/10.1002/ijc.25589
  38. Perez Pinero C, Bruzzone A, Sarappa MG, Castillo LF, Luthy IA (2012). Involvement of $\alpha$2- and $\beta$2-adrenoceptors on breast cancer cell proliferation and tumour growth regulation. Br J Pharmacol, 166, 721-36. https://doi.org/10.1111/j.1476-5381.2011.01791.x
  39. Powe DG, Voss MJ, Zanker KS, et al (2010). Beta-blocker drug therapy reduces secondary cancer formation in breast cancer and improves cancer specific survival. Oncotarget, 1, 628-38. https://doi.org/10.18632/oncotarget.197
  40. Powe DG, Voss MJ, Habashy HO, et al (2011). Alpha- and beta-adrenergic receptor (AR) protein expression is associated with poor clinical outcome in breast cancer: an immunohistochemical study. Breast Cancer Res Treat, 130, 457-63. https://doi.org/10.1007/s10549-011-1371-z
  41. Premal H. Thaker, Anil K. Sood (2008). The Neuroendocrine Impact of Chronic Stress on Cancer. Semin Cancer Biol, 18, 164-70. https://doi.org/10.1016/j.semcancer.2007.12.005
  42. Ronco AL1, De Stefani E, Deneo-Pellegrini H, Quarneti A (2012). Diabetes, overweight and risk of postmenopausal breast cancer: a case-control study in Uruguay. Asian Pac J Cancer Prev, 13, 139-46. https://doi.org/10.7314/APJCP.2012.13.1.139
  43. Sastry KS, Karpova Y, Prokopovich S, et al (2007). Epinephrine protects cancer cells from apoptosis via activation of cAMPdependent protein kinase and BAD phosphorylation. J Biol Chem, 282, 14094-100. https://doi.org/10.1074/jbc.M611370200
  44. Shah SM, Carey IM, Owen CG, et al (2011). Dose $\beta$-adrenoceptor blocker therapy improve cancer survival? findings from a population-based retrospective cohort study. Br J Clin Pharmacol, 72, 157-61. https://doi.org/10.1111/j.1365-2125.2011.03980.x
  45. Shahzad MM, Arevalo JM, Armaiz-Pena GN, et al (2010). Stress effects on FosB- and interleukin-8 (IL8)-driven ovarian cancer growth and metastasis. J Biol Chem, 285, 35462-70. https://doi.org/10.1074/jbc.M110.109579
  46. Shan T, Ma Q, Zhang D, et al (2011). $\beta$2-Adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur J Pharmacol, 665, 1-7. https://doi.org/10.1016/j.ejphar.2011.04.055
  47. Shi M, Liu D, Duan H, et al (2011). The $\beta$2-adrenergic receptor and Her2 comprise a positive feedback loop in human breast cancer cells. Breast Cancer Res Treat, 125, 351-62. https://doi.org/10.1007/s10549-010-0822-2
  48. Sloan EK, Priceman SJ, Cox BF, et al (2010). The sympathetic nervous system induces a metastatic switch in primary breast cancer. Cancer Res, 70, 7042-52. https://doi.org/10.1158/0008-5472.CAN-10-0522
  49. Sood AK, Bhatty R, Kamat AA, et al (2006). Stress hormonemediated invasion of ovarian cancer cells. Clin Cancer Res, 12, 369-75. https://doi.org/10.1158/1078-0432.CCR-05-1698
  50. Sood AK, Armaiz-Pena GN, Halder J, et al (2010). Adrenergic modulation of focal adhesion kinase protects human ovarian cancer cells from anoikis. J Clin Invest, 120, 1515-23. https://doi.org/10.1172/JCI40802
  51. Susan K. Lutgendorf, Anil K. Sood, Michael H. Antoni (2010). Host factors and cancer progression: Biobehavioral signaling pathways and interventions. J Clin Oncol, 28, 4094-9. https://doi.org/10.1200/JCO.2009.26.9357
  52. Tang J1, Li Z, Lu L, Cho CH (2013). Seminars in Cancer Biology $\beta$-Adrenergic system, a backstage manipulator regulating tumour progression and drug target in cancer therapy. Semin Cancer Biol, 23, 533-42. https://doi.org/10.1016/j.semcancer.2013.08.009
  53. Thaker PH, Han LY, Kamat AA, et al (2006). Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma. Nat Med, 12, 939-44. https://doi.org/10.1038/nm1447
  54. van Zitteren M1, van der Net JB, Kundu S, et al (2011). Genome-based prediction of breast cancer risk in the general population: a modeling study based on meta-analyses of genetic associations. Cancer Epidemiol Biomarkers Prev, 20, 9-22. https://doi.org/10.1158/1055-9965.EPI-10-0329
  55. Werner H1, Bruchim I (2012). IGF-1 and BRCA1 signalling pathways in familial cancer. Lancet Oncol, 13, 537-44. https://doi.org/10.1016/S1470-2045(12)70362-5
  56. Xiao Y, Zhang S, Hou G, et al (2014). Clinical pathological characteristics and prognostic analysis of diabetic women with luminal subtype breast cancer. Tumour Biol, 35, 2035-45. https://doi.org/10.1007/s13277-013-1270-5
  57. Yamazaki S, Miyoshi N, Kawabata K, et al (2014). Quercetin-3-O-glucuronide inhibits noradrenaline-promoted invasion of MDA-MB-231 human breast cancer cells by blocking $\beta$2-adrenergic signaling. Arch Biochem Biophys, 557, 18-27. https://doi.org/10.1016/j.abb.2014.05.030
  58. Yang EV, Bane CM, MacCallum RC, et al (2002). Stress-related modulation of matrix metalloproteinase expression. J Neuroimmunol, 133, 144-50. https://doi.org/10.1016/S0165-5728(02)00270-9
  59. Yang EV, Sood AK, Chen M, et al (2006). Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metal- loproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res, 66, 10357-64. https://doi.org/10.1158/0008-5472.CAN-06-2496
  60. Ying Gao, Yu-Bei Huang, Xue-Ou Liu, et al (2013). Tea consumption, alcohol drinking and physical activity associations with breast cancer risk among chinese females: a systematic review and meta-analysis. Asian Pac J Cancer Prev, 14, 7543-50. https://doi.org/10.7314/APJCP.2013.14.12.7543
  61. Zhang D, Ma Q, Shen S, Hu H (2009). Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: the study of beta-adrenoeptor antagonist's anticancer effect in pancreatic cancer cell. Pancreas, 38, 94-100. https://doi.org/10.1097/MPA.0b013e318184f50c
  62. Zhang D, Ma QY, Hu HT, Zhang M (2010). Beta2-adrenergic antagonists suppress pancreatic cancer cell invasion by inhibiting CREB, NFkB and AP-1. Cancer Biol Ther, 10, 19-29. https://doi.org/10.4161/cbt.10.1.11944