Resveratrol-loaded Nanoparticles Induce Antioxidant Activity against Oxidative Stress

  • Kim, Jae-Hwan (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Park, Eun-Young (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Ha, Ho-Kyung (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Jo, Chan-Mi (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Lee, Won-Jae (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Lee, Sung Sill (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University) ;
  • Kim, Jin Wook (Department of Animal Bioscience (Institute of Agriculture and Life Science), Division of Applied Life Science (BK21 program), Gyeongsang National University)
  • Received : 2015.09.16
  • Accepted : 2015.11.30
  • Published : 2016.02.01


Resveratrol acts as a free radical scavenger and a potent antioxidant in the inhibition of numerous reactive oxygen species (ROS). The function of resveratrol and resveratrol-loaded nanoparticles in protecting human lung cancer cells (A549) against hydrogen peroxide was investigated in this study. The 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) assay was performed to evaluate the antioxidant properties. Resveratrol had substantially high antioxidant capacity (trolox equivalent antioxidant capacity value) compared to trolox and vitamin E since the concentration of resveratrol was more than $50{\mu}M$. Nanoparticles prepared from ${\beta}$-lactoglobulin (${\beta}$-lg) were successfully developed. The ${\beta}$-lg nanoparticle showed 60 to 146 nm diameter in size with negatively charged surface. Non-cytotoxicity was observed in Caco-2 cells treated with ${\beta}$-lg nanoparticles. Fluorescein isothiocynate-conjugated ${\beta}$-lg nanoparticles were identified into the cell membrane of Caco-2 cells, indicating that nanoparticles can be used as a delivery system. Hydrogen peroxide caused accumulation of ROS in a dose- and time-dependent manner. Resveratrol-loaded nanoparticles restored $H_2O_2$-induced ROS levels by induction of cellular uptake of resveratrol in A549 cells. Furthermore, resveratrol activated nuclear factor erythroid 2-related factor 2-Kelch ECH associating protein 1 (Nrf2-Keap1) signaling in A549 cells, thereby accumulation of Nrf2 abundance, as demonstrated by western blotting approach. Overall, these results may have implications for improvement of oxidative stress in treatment with nanoparticles as a biodegradable and non-toxic delivery carrier of bioactive compounds.


Resveratrol;Nanoparticle;Oxidative Stress;${\beta}$-Lactoglobulin;Caco-2 Cell


Supported by : Institute of Planning and Evaluation for Technology in Food, Agriculture, Forestry and Fisheries (IPET)


  1. Aggarwal, B. B., S. Shishodia, C. de la Lastra, I. Villegas, and A. R. Martin. 2006. Resveratrol in Health and Disease. CRC Press, Boca Raton, FL, USA. pp. 33-54.
  2. Beckman, J. S. and W. H. Koppenol. 1996. Nitric oxide, superoxide, and peroxynitrite: the good, the bad, and ugly. Am. J. Physiol. 271:C1424-1437.
  3. Bravo, L. 1998. Polyphenols: Chemistry, Dietary Sources, Metabolism, and Nutritional Significance. Nutr. Rev. 56:317- 333.
  4. Chen, L. and M. Subirade. 2005. Chitosan/${\beta}$-lactoglobulin coreshell nanoparticles as nutraceutical carriers. Biomaterals 26:6041-6053.
  5. Cheng, J. C., J. G. Fang, W. F. Chen., B. Zhou., L. Yang, and Z. L. Liu. 2006. Structure-activity relationship studies of resveratrol and its analogues by the reaction kinetics of low density lipoprotein peroxidation. Bioorg. Chem. 34:142-157.
  6. Cockburn, A., R. Bradford, N. Buck, A. Constable, G. Edwards, B. Haber, P. Hepburn, J. Howlett, F. Kampers, C. Klein, M. Radomski, H. Stamm, S. Wijnhoven, and T. Wildemann. 2012. Approaches to the safety assessment of engineered nanomaterials (ENM) in food. Food Chem. Toxicol. 50:2224- 2242.
  7. de la Lastra, C. A. and I. Villegas. 2005. Resveratrol as an antiinflammatory and anti-aging agent: mechanisms and clinical implications. Mol. Nutr. Food Res. 49:405-430.
  8. de la Lastra, C. A. and I. Villegas. 2007. Resveratrol as an antioxidant and pro-oxidant agent: mechanisms and clinical implications. Biochem. Soc. Trans. 35:1156-1160.
  9. Dinkova-Kostova, A. T., W. D. Holtzclaw, R. N. Cole, K. Itoh, N. Wakabayashi, Y. Katoh, M. Yammamoto, and P. Talalay. 2002. Direct evidence that sulfhydryl groups of Keap1 are the sensors regulating induction of phase 2 enzyems that protect against carcinogens and oxidants. Proc. Natl. Acad. Sci. USA 99:11908-11913.
  10. Gracia-Julia, A., M. Rene, M. Cortes-Munoz, L. Picart, T. Lopez- Pedemonte, and D. Chevalier. 2008. Effect of dynamic high pressure on whey protein aggregation: A comparison with the effect of continuous short-time thermal treatments. Food Hydrocoll. 22:1014-1032.
  11. Guha, P., A. Dey, M. V. Dhyani, R. Sen, M. Chatterjee, S. Chattopadhyay, and S. K. Bandyopadhyay. 2010. Calpain and caspase orchestrated death signal to accomplish apoptosis induced by resveratrol and its novel analog hydroxstilbene-1 in cancer cells. J. Pharmacol. Exp. Ther. 334:381-394.
  12. Ha, H. K., J. W. Kim, M. R. Lee, W. Jun, and W. J. Lee. 2015. Cellular uptake and cytotoxicity of ${\beta}$-lactoglobulin nanoparticles: The effects of particle size and surface charge. Asian Australas. J. Anim. Sci. 28:420-427.
  13. Hanakova, A., K. Bogdanova, K. Tomankova, S. Binder, R. Bajgar, K. Langova, M. Kolar, J. Mosinger, and H. Kolarova. 2014. Study of photodynamic effects on NIH 3T3 cell line and bacteria. Biomed. Pap. Med. Fac. Univ. Palacky. Olomouc. Czech Repub. 158:201-207.
  14. Herraiz, T. and J. Galisteo. 2004. Endogenous and dietary indoles: a class of antioxidants and radical scavengers in the ABTS assay. Free Radic. Res. 38:323-331.
  15. Hidalgo, I. J., T. J. Raub, and R. T. Borchardt. 1989. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability. Gastroenterology 96:736-749.
  16. Hu, B., Y. Ting, X. Zeng, and Q. Huang. 2012. Cellular uptake and cytotoxicity of chitosan-caseinophosphopeptides nanocomplexes loaded with epigallocatechin gallate. Carbohydr. Polym. 89:362-370.
  17. Ignatowicz, E. and W. Baer-Dubowska. 2001. Resveratrol, a natural chemopreventive agent against degenerative diseases. Pol. J. Pharmacol. 53:557-569.
  18. Itoh, K., N. Wakabayashi, Y. Katoh, T. Ishii, K. Igarashi, J. D. Engel, and M. Yamamoto. 1999. Keap1 represses nuclear activation of antioxidant responsive elements by Nrf2 through binding to the amino-terminal Neh2 domain. Genes Dev. 13: 76-86.
  19. Itoh, K., T. Chiba, S. Takahashi, T. Ishii, K. Igarashi, Y. Katoh, T. Oyake, N. Hayashi, K. Satho, I. Hatayama, M. Yamamoto, and Y. Nabeshima. 1997. An Nrf2/small Maf heterodimer mediates the induction of phase II detoxifying enzyme genes through antioxidant response elements. Biochem. Biophys. Res. Commun. 236:313-322.
  20. Jaramillo, M. C. and D. D. Zhang. 2015. The emerging role of the Nrf2-Keap1 signaling pathway in cancer. Genes Dev. 27:2179- 2191.
  21. Kansanen, E., H. K. Jyrkkanen, and A. L. Levonen. 2012. Activation of stress signaling pathways by electrophilic oxidized and nitrated lipids. Free Radic. Biol. Med. 52:973- 982.
  22. Kao, C. L., L. K. Chen, Y. L. Chang, M. C. Yung, C. C. Hsu, Y. C. Chen, W. L. Lo, S. J. Chen, H. H. Ku, and S. J. Hwang. 2010. Resveratrol protects human endothelium from H(2)O(2)- induced oxidative stress and senescence via SirT1 activation. J. Atheroscler. Thromb. 17:970-979.
  23. Kim, Y. S., J. W. Sull, and H. J. Sung. 2012. Suppressing effect of resveratrol on the migration and invasion of human metastatic lung and cervical cancer cells. Mol. Biol. Rep. 39:8709-8716.
  24. Livney, Y. D. 2010. Milk proteins as vehicles for bioactives. Curr. Opin. Colloid Interface Sci. 15:73-83.
  25. Mates, J. M., C. Perez-Gomez, and I. N. Castro. 1999. Antioxidant enzymes and human diseases. Clin. Biochem. 32:595-603.
  26. Mikula-Pietrasik, J., A. Kuczmarska, M. Kucinska, M. Murias, M. Wierzchowski, M. Winckiewicz, R. Staniszewski, A. Breborowicz, and K. Ksiazek. 2012. Resveratrol and its synthetic derivatives exert opposite effects on mesothelial celldependent angiogenesis via modulating secretion of VEGF and IL-8/CXCL8. Angiogenesis 15:361-376.
  27. Nakazato, T., K. Ito, Y. Ikeda, and M. Kizaki. 2005. Green tea component, catechin, induces apoptosis of human malignant B cells via production of reactive oxygen species. Clin. Cancer Res. 11:6040-6049.
  28. Napierska, D., L. C. J. Thomassen, V. Rabolli, D. Lison, L. Gonzalez, M. Kirsch-Volders, J. A. Martens, and P. H. Hoet. 2009. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small 5:846-853.
  29. Ou, B., M. Hampsch-Woodill, and R. L. Prior. 2001. Development and validation of an improved oxygen radical absorbance capacity assay using fluorescein as the fluorescent probe. J. Agric. Food Chem. 49:4619-4626.
  30. Powell, J. J., N. Faria, E. Thomas-McKay, and L. C. Pele. 2010. Origin and fate of dietary nanoparticles and microparticles in the gastrointestinal tract. J. Autoimmun. 34:J226-J233.
  31. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. 1999. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26:1231-1237.
  32. Renaud, S. and M. de Lorgeril. 1992. Wine, alcohol, platelets, and the French paradox for coronary heart disease. Lancet 339:1523-1526.
  33. SAS Institute Inc. 2003. SAS User's Guide: version 9.1 Cary, NC, USA.
  34. Schieber, M. and N. S. Chandel. 2014. ROS function in redox signaling and oxidative stress. Curr. Biol. 24:R453-R462.
  35. Seeram, N. P., V. V. Kulkarni, and S. Padhye 2006. Sources and chemistry of resveratrol. Resveratrol health and disease. CRC Press, Boca Raton, FL, USA. 17-32.
  36. Shankar, S., I. Siddiqui, and R. K. Srivastava. 2007. Molecular mechanisms of resveratrol (3,4,5-trihydroxy-trans-stilbene) and its interaction with TNF-related apoptosis inducing ligand (TRAIL) in androgen-insensitive prostate cancer cells. Mol. Cell. Biochem. 304:273-285.
  37. Soleas, G. J., E. P. Diamandis, and D. M. Goldberg. 1997. Wine as a biological fluid: history, production, and role in disease prevention. J. Clin. Lab. Anal. 11:287-331.<287::AID-JCLA6>3.0.CO;2-4
  38. Sporn, M. B. and K. T. liby. 2012. NRF2 and cancer: the good, the bad and the importance of context. Nat. Rev. Cancer 12:564- 571.
  39. Taguchi, K., H. Motohashi, and M. Yamamoto. 2011. Molecular mechanisms of the Keap1-Nrf2 pathway in stress response and cancer evolution. Genes Cells 16:123-140.
  40. Tinhofer, I., D. Bernhard, M. Senfter, G. Anether, M. Loeffler, G. Kroemer, R. Kofler, A. Csordas, and R. Greil. 2001. Resveratrol, a tumor-suppressive compound from grapes, induces apoptosis via a novel mitochondrial pathway controlled by Bcl-2. FASEB J. 15:1613-1615.
  41. Win, K. Y. and S. S. Feng. 2005. Effects of particle size and surface coating on cellular uptake of polymeric nanoparticles for oral delivery of anticancer drugs. Biomaterials 26:2713- 2722.
  42. Yaseen, A. A. 2011. The Natural Polyphenol Resveratrol Potentiates the Lethality of HDAC Inhibitors in Acutr Myelogenous Leukemia Cells through Multiple Mechanisms. Master's Thesis, Virginia Commonwealth University, Richmond, VA, USA.
  43. Yin, H., H. P. Too, and G. M. Chow. 2005. The effects of particle size and surface coating on the cytotoxicity of nickel ferrite. Biomaterials 26:5818-5826.
  44. Zhang, J., X. G. Chen, W. B. Peng, and C. S. Liu. 2008. Uptake of oleoyl-chitosan nanoparticles by A549 cells. Nanomedicine 4:208-214.
  45. Zheng, Y., Y. Liu, J. Ge, X. Wang, L. Liu, Z. Bu, and P. Liu. 2010. Resveratrol protects human lens epithelial cells against H2O2- induced oxidative stress by increasing catalase, SOD-1, and HO-1 expression. Mol. Vis. 16:1467-1474.

Cited by

  1. Elevation of tumour markers TGF-β, M2-PK, OV-6 and AFP in hepatocellular carcinoma (HCC)-induced rats and their suppression by microalgae Chlorella vulgaris vol.17, pp.1, 2017,
  2. Models for Plant-Derived Compounds vol.2017, pp.1942-0994, 2017,
  3. Effects of Resveratrol against Lung Cancer: In Vitro and In Vivo Studies vol.9, pp.11, 2017,
  4. Cytoprotective Effects of Natural Compounds against Oxidative Stress vol.7, pp.10, 2018,
  5. Effect of two glycyrrhizinic acid nanoparticle carriers on MARC-145 cells actin filaments vol.8, pp.5, 2018,
  6. Nanoparticle delivery of grape seed-derived proanthocyanidins to airway epithelial cells dampens oxidative stress and inflammation vol.16, pp.1, 2018,
  7. Resveratrol as an active ingredient for cosmetic and dermatological applications: a review pp.1476-4180, 2018,
  8. Resveratrol as a Tumor-Suppressive Nutraceutical Modulating Tumor Microenvironment and Malignant Behaviors of Cancer vol.20, pp.4, 2019,