Physiological Roles of Adipokines, Hepatokines, and Myokines in Ruminants

  • Roh, Sang-Gun (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Suzuki, Yutaka (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University) ;
  • Gotoh, Takafumi (Kuju Agriculture Research Center, Kyushu University) ;
  • Tatsumi, Ryuichi (Department of Animal and Marine Bioresource Sciences, Graduate School of Agriculture, Kyushu University) ;
  • Katoh, Kazuo (Lab of Animal Physiology, Graduate School of Agricultural Science, Tohoku University)
  • Published : 2016.01.01


Since the discovery of leptin secreted from adipocytes, specialized tissues and cells have been found that secrete the several peptides (or cytokines) that are characterized to negatively and positively regulate the metabolic process. Different types of adipokines, hepatokines, and myokines, which act as cytokines, are secreted from adipose, liver, and muscle tissue, respectively, and have been identified and examined for their physiological roles in humans and disease in animal models. Recently, various studies of these cytokines have been conducted in ruminants, including dairy cattle, beef cattle, sheep, and goat. Interestingly, a few cytokines from these tissues in ruminants play an important role in the post-parturition, lactation, and fattening (marbling) periods. Thus, understanding these hormones is important for improving nutritional management in dairy cows and beef cattle. However, to our knowledge, there have been no reviews of the characteristics of these cytokines in beef and dairy products in ruminants. In particular, lipid and glucose metabolism in adipose tissue, liver tissue, and muscle tissue are very important for energy storage, production, and synthesis, which are regulated by these cytokines in ruminant production. In this review, we summarize the physiological roles of adipokines, hepatokines, and myokines in ruminants. This discussion provides a foundation for understanding the role of cytokines in animal production of ruminants.


Supported by : JSPS KAKENHI


  1. Aggarwal, B. B. 2003. Signalling pathways of the TNF superfamily: A double-edged sword. Nat. Rev. Immunol 3: 745-756.
  2. Allen, R. E., S. M. Sheehan, R. G. Taylor, T. L. Kendall, and G. M. Rice. 1995. Hepatocyte growth factor activates quiescent skeletal muscle satellite cells in vitro. J Cell Physiol. 165:307-312.
  3. Auberger, P., L. Falquerho, J. O. Contreres, G. Pages, G. Le Cam, B. Rossi, and A. Le Cam. 1989. Characterization of a natural inhibitor of the insulin receptor tyrosine kinase: cDNA cloning, purification, and anti-mitogenic activity. Cell 58:631-640.
  4. Baggiolini, M. 2001. Chemokines in pathology and medicine. J. Int. Med. 250:91-104.
  5. Baik, M., T. T. Vu, M. Y. Piao, and H. J. Kang. 2014. Association of DNA methylation levels with tissue-specific expression of adipogenic and lipogenic genes in longissimus dorsi muscle of Korean cattle. Asian Australas. J. Anim. Sci. 27:1493-1498.
  6. Bartoccioni, E., D. Michaelis, and R. Hohlfeld. 1994. Constitutive and cytokine-induced production of interleukin-6 by human myoblasts. Immunol. Lett. 42:135-138.
  7. Belk, K. E., J. D. Tatum, and F. L. Williams, Jr. 1991. Deposition and distribution of carcass fat for steers differing in frame size and muscle thickness. J. Anim. Sci. 69:609-616.
  8. Bell, A. W. 1995. Regulation of organic nutrient metabolism during transition from late pregnancy to early lactation. J. Anim. Sci. 73:2804-2819.
  9. Berg, A. H., T. P. Combs, X. Du, M. Brownlee, and P. E. Scherer. 2001. The adipocyte-secreted protein Acrp30 enhances hepatic insulin action. Nat. Med. 7:947-953.
  10. Bishop, M. D., R. C. M. Simmen, F. A. Simmen, and M. E. Davis. 1989. The relationship of insulin-like growth factor-I with postweaning performance in Angus beef cattle. J. Anim. Sci. 67:2872-2880.
  11. Bobe, G., J. W. Young, and D. C. Beitz. 2004. Invited review: Pathology, etiology, prevention, and treatment of fatty liver in dairy cows. J. Dairy Sci. 87:3105-3124.
  12. Bostrom, P., J. Wu, M. P. Jedrychowski, A. Korde, L. Ye, J. C. Lo, K. A. Rasbach, E. A. Bostrom, J. H. Choi, and J. Z. Long et al. 2012. A PGC1-[agr]-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463-468.
  13. Bozaoglu, K., K. Bolton, J. McMillan, P. Zimmet, J. Jowett, G. Collier, K. Walder, and D. Segal. 2007. Chemerin is a novel adipokine associated with obesity and metabolic syndrome. Endocrinology 148:4687-4694.
  14. Bozaoglu, K., D. Segal, K. A. Shields, N. Cummings, J. E. Curran, A. G. Comuzzie, M. C. Mahaney, D. L. Rainwater, J. L. VandeBerg, J. W. MacCluer, G. Collier, J. Blangero, K. Walder, and J. B. Jowett. 2009. Chemerin is associated with metabolic syndrome phenotypes in a Mexican-American population. J. Clin. Endocrinol. Metab. 94:3085-3088.
  15. Brakenhielm, E., R. Cao, B. Gao, B. Angelin, B. Cannon, P. Parini, and Y. Cao. 2004. Angiogenesis inhibitor, TNP-470, prevents diet-induced and genetic obesity in mice. Circ. Res. 94:1579-1588.
  16. Bruun, J. M., S. B. Pedersen, K. Kristensen, and B. Richelsen. 2002. Effects of pro-inflammatory cytokines and chemokines on leptin production in human adipose tissue in vitro. Mol. Cell. Endocrinol. 190:91-99.
  17. Bruunsgaard, H. 1997. Exercise-induced increase in interleukin-6 is related to muscle damage. J. Physiol.(Lond) 499(Pt 3):833-841.
  18. Bub, J. D., T. Miyazaki, and Y. Iwamoto. 2006. Adiponectin as a growth inhibitor in prostate cancer cells. Biochem. Biophys. Res. Commun. 340:1158-1166.
  19. Burk, R. F. and K. E. Hill. 2005. Selenoprotein P: An extracellular protein with unique physical characteristics and a role in selenium homeostasis. Annu. Rev. Nutr. 25:215-235.
  20. Carlson, B. A., S. V. Novoselov, E. Kumaraswamy, B. J. Lee, M. R. Anver, V. N. Gladyshev, and D. L. Hatfield. 2004. Specific excision of the selenocysteine tRNA[Ser]Sec (Trsp) gene in mouse liver demonstrates an essential role of selenoproteins in liver function. J. Biol. Chem. 279:8011-8017.
  21. Cawthorn, W. P. and J. K. Sethi. 2008. TNF-alpha and adipocyte biology. FEBS Lett. 582:117-131.
  22. Charge, S. B. and M. A. Rudnicki. 2004. Cellular and molecular regulation of muscle regeneration. Physiol. Rev. 84:209-238.
  23. Choi, S. H., S. K. Park, B. J. Johnson, K. Y. Chung, C. W. Choi, K. H. Kim, W. Y. Kim, and B. Smith. 2015. AMPKalpha, C/EBPbeta, CPT1beta, GPR43, PPARgamma, and SCD gene expression in single- and co-cultured bovine satellite cells and intramuscular preadipocytes treated with palmitic, stearic, oleic, and linoleic acid. Asian Australas. J. Anim. Sci. 28:411-419.
  24. Copray, S., R. Liem, N. Brouwer, P. Greenhaff, F. Habens, and P. Fernyhough. 2000. Contraction-induced muscle fiber damage is increased in soleus muscle of streptozotocin-diabetic rats and is associated with elevated expression of brain-derived neurotrophic factor mRNA in muscle fibers and activated satellite cells. Exp. Neurol. 161:597-608.
  25. Cox, A. R., C. J. Lam, C. W. Bonnyman, J. Chavez, J. S. Rios, and J. A. Kushner. 2015. Angiopoietin-like protein 8 (ANGPTL8)/betatrophin overexpression does not increase beta cell proliferation in mice. Diabetologia 58:1523-1531.
  26. Daniel, J. A., T. H. Elsasser, C. D. Morrison, D. H. Keisler, B. K. Whitlock, B. Steele, D. Pugh, and J. L. Sartin. 2003. Leptin, tumor necrosis factor-alpha (TNF), and CD14 in ovine adipose tissue and changes in circulating TNF in lean and fat sheep. J. Anim. Sci. 81:2590-2599.
  27. De Cesaris, P., D. Starace, A. Riccioli, F. Padula, A. Filippini, and E. Ziparo. 1998. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J. Biol. Chem. 273:7566-7571.
  28. De Rossi, M., P. Bernasconi, F. Baggi, R. De Waal Malefyt, and R. Mantegazza. 2000. Cytokines and chemokines are both expressed by human myoblasts: possible relevance for the immune pathogenesis of muscle inflammation. Int. Immunol. 12:1329-1335.
  29. Delavaud, C., F. Bocquier, Y. Chilliard, D. H. Keisler, A. Gertler, and G. Kann. 2000. Plasma leptin determination in ruminants: effect of nutritional status and body fatness on plasma leptin concentration assessed by a specific RIA in sheep. J Endocrinol. 165:519-526.
  30. Deng, Y., H. Wang, Y. Lu, S. Liu, Q. Zhang, J. Huang, R. Zhu, J. Yang, R. Zhang, D. Zhang, W. Shen, G. Ning, and Y. Yang. 2013. Identification of chemerin as a novel FXR target gene down-regulated in the progression of nonalcoholic steatohepatitis. Endocrinology 154:1794-1801.
  31. Do, M.-K. Q., Y. Sato, N. Shimizu, T. Suzuki, J. Shono, W. Mizunoya, M. Nakamura, Y. Ikeuchi, J. E. Anderson, and R. Tatsumi. 2011. Growth factor regulation of neural chemorepellent Sema3A expression in satellite cell cultures. Am. J. Physiol. Cell Physiol. 301:C1270-C1279.
  32. Docke, S., J. F. Lock, A. L. Birkenfeld, S. Hoppe, S. Lieske, A. Rieger, N. Raschzok, I. M. Sauer, S. Florian, and M. A. Osterhoff et al. 2013. Elevated hepatic chemerin mRNA expression in human non-alcoholic fatty liver disease. Eur. J. Endocrinol. 169:547-557.
  33. Doroudgar, S. and C. C. Glembotski. 2011. The cardiokine story unfolds: Ischemic stress-induced protein secretion in the heart. Trends Mol. Med. 17:207-214.
  34. Drackley, J. K., T. R. Overton, and G. N. Douglas. 2001. Adaptations of glucose and long-chain fatty acid metabolism in liver of dairy cows during the periparturient period. J. Dairy Sci. 84:E100-E112.
  35. Ellingsgaard, H., I. Hauselmann, B. Schuler, A. M. Habib, L. L. Baggio, D. T. Meier, E. Eppler, K. Bouzakri, S. Wueest, and Y. D. Muller et al. 2011. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 17:1481-1489.
  36. Fawcett, R. L., A. S. Waechter, L. B. Williams, P. Zhang, R. Louie, R. Jones, M. Inman, J. Huse, and R. V. Considine. 2000. Tumor necrosis factor-alpha inhibits leptin production in subcutaneous and omental adipocytes from morbidly obese humans. J. Clin. Endocrinol. Metab. 85:530-535.
  37. Feuermann, Y., S. J. Mabjeesh, L. Niv-Spector, D. Levin, and A. Shamay. 2006. Prolactin affects leptin action in the bovine mammary gland via the mammary fat pad. J Endocrinol 191:407-413.
  38. Fruebis, J., T. S. Tsao, S. Javorschi, D. Ebbets-Reed, M. R. Erickson, F. T. Yen, B. E. Bihain, and H. F. Lodish. 2001. Proteolytic cleavage product of 30-kDa adipocyte complement-related protein increases fatty acid oxidation in muscle and causes weight loss in mice. Proc. Natl. Acad. Sci. USA. 98:2005-2010.
  39. Gomez-Pinilla, F., Z. Ying, R. R. Roy, R. Molteni, and V. R. Edgerton. 2002. Voluntary exercise induces a BDNF-mediated mechanism that promotes neuroplasticity. J. Neurophysiol. 88:2187-2195.
  40. Geary, T. W., E. L. McFadin, M. D. MacNeil, E. E. Grings, R. E. Short, R. N. Funston, and D. H. Keisler. 2003. Leptin as a predictor of carcass composition in beef cattle. J. Anim. Sci. 81:1-8.
  41. Goff, J. P. and J. R. Stabel. 1990. Decreased plasma retinol, alphatocopherol, and zinc concentration during the periparturient period: effect of milk fever. J. Dairy Sci. 73:3195-3199.
  42. Goralski, K. B., T. C. McCarthy, E. A. Hanniman, B. A. Zabel, E. C. Butcher, S. D. Parlee, S. Muruganandan, and C. J. Sinal. 2007. Chemerin, a novel adipokine that regulates adipogenesis and adipocyte metabolism. J. Biol. Chem. 282:28175-28188.
  43. Gotoh, T. 2003. Histochemical properties of skeletal muscles in Japanese cattle and their meat production ability. Anim. Sci. J. 74:339-354.
  44. Gotoh, T., H. Iwamoto, Y. Nakanishi, R. Umetsu, and Y. Ono. 1999. Histochemical properties of skeletal muscles in different body parts of young Japanese black steers. Anim. Sci. Technol. 70:497-509.
  45. Grabstein, K. H., J. Eisenman, K. Shanebeck, C. Rauch, S. Srinivasan, V. Fung, C. Beers, J. Richardson, M. A. Schoenborn, and M. Ahdieh et al. 1994. Cloning of a T cell growth factor that interacts with the beta chain of the interleukin-2 receptor. Science 264:965-968.
  46. Gusarova, V., C. A. Alexa, E. Na, P. E. Stevis, Y. Xin, S. Bonner-Weir, J. C. Cohen, H. H. Hobbs, A. J. Murphy, G. D. Yancopoulos, and J. Gromada. 2014. ANGPTL8/betatrophin does not control pancreatic beta cell expansion. Cell 159:691-696.
  47. Haugen, F., F. Norheim, H. Lian, A. J. Wensaas, S. Dueland, O. Berg, A. Funderud, B. S. Skålhegg, T. Raastad, and C. A. Drevon. 2010. IL-7 is expressed and secreted by human skeletal muscle cells. Am. J. Physiol.-Cell Physiol. 298:C807-C816.
  48. Hilton, D. J., N. A. Nicola, and D. Metcalf. 1988. Purification of a murine leukemia inhibitory factor from Krebs ascites cells. Anal. Biochem. 173: 359-367.
  49. Hu, W. and P. Feng. 2011. Elevated serum chemerin concentrations are associated with renal dysfunction in type 2 diabetic patients. Diabetes Res. Clin. Pract. 91:159-163.
  50. Kadokawa, H., J. R. Briegel, M. A. Blackberry, D. Blache, G. B. Martin, and N. R. Adams. 2003. Relationships between plasma concentrations of leptin and other metabolic hormones in GH-transgenic sheep infused with glucose. Domest. Anim. Endocrinol. 24:219-229.
  51. Kang, H. J., N. H. Trang, and M. Baik. 2015. Effects of dietary restriction on the expression of lipid metabolism and growth hormone signaling genes in the longissimus dorsi muscle of Korean cattle steers. Asian Australas. J. Anim. Sci. 28:1187-1193.
  52. Keller, C., Y. Hellsten, A. Steensberg, and B. K. Pedersen. 2006. Differential regulation of IL-6 and TNF-alpha via calcineurin in human skeletal muscle cells. Cytokine 36:141-147.
  53. Kenison, D. C., T. H. Elsasser, and R. Fayer. 1991. Tumor necrosis factor as a potential mediator of acute metabolic and hormonal responses to endotoxemia in calves. Am. J. Vet. Res. 52:1320-1326.
  54. Kokkonen, T., J. Taponen, T. Anttila, L. Syrjala-Qvist, C. Delavaud, Y. Chilliard, M. Tuori, and A. T. Tesfa. 2005. Effect of body fatness and glucogenic supplement on lipid and protein mobilization and plasma leptin in dairy cows. J. Dairy Sci. 88:1127-1141.
  55. Komatsu, T., F. Itoh, S. Mikawa, and K. Hodate. 2003. Gene expression of resistin in adipose tissue and mammary gland of lactating and non-lactating cows. J. Endocrinol. 178:R1-R5.
  56. Komatsu, T., F. Itoh, R. Sakumoto, K. Hodate, Y. Obara, and S. Kushibiki. 2007. Changes in the gene expression of adiponectin and glucose transporter 12 (GLUT12) in lactating and nonlactating cows. Anim. Sci. J. 78:98-102.
  57. Komolka, K., E. Albrecht, L. Schering, J. Brenmoehl, A. Hoeflich, and S. Maak. 2014. Locus characterization and gene expression of bovine FNDC5: Is the myokine irisin relevant in cattle? PLoS One 9:e88060.
  58. Krautbauer, S., J. Wanninger, K. Eisinger, Y. Hader, M. Beck, A. Kopp, A. Schmid, T. S. Weiss, C. Dorn, and C. Buechler. 2013. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp. Mol. Pathol. 95:199-205.
  59. Kushibiki, S., K. Hodate, H. Shingu, Y. Ueda, Y. Mori, T. Itoh, and Y. Yokomizo. 2001a. Effects of long-term administration of recombinant bovine tumor necrosis factor-alpha on glucose metabolism and growth hormone secretion in steers. Am. J. Vet. Res. 62:794-798.
  60. Kushibiki, S., K. Hodate, H. Shingu, Y. Ueda, M. Shinoda, Y. Mori, T. Itoh, and Y. Yokomizo. 2001b. Insulin resistance induced in dairy steers by tumor necrosis factor alpha is partially reversed by 2,4-thiazolidinedione. Domest. Anim. Endocrinol. 21:25-37.
  61. Kushibiki, S., K. Hodate, Y. Ueda, H. Shingu, Y. Mori, T. Itoh, and Y. Yokomizo. 2000. Administration of recombinant bovine tumor necrosis factor-alpha affects intermediary metabolism and insulin and growth hormone secretion in dairy heifers. J. Anim. Sci. 78:2164-2171.
  62. Laliotis, G. P., I. Bizelis, and E. Rogdakis. 2010. Comparative Approach of the de novo Fatty Acid Synthesis (Lipogenesis) between Ruminant and Non Ruminant Mammalian Species: From Biochemical Level to the Main Regulatory Lipogenic Genes. Curr. Genomics 11:168-183.
  63. Lee, H. G., Y. J. Choi, S. R. Lee, H. Kuwayama, H. Hidari, and S. K. You. 2005a. Effects of dietary protein and growth hormone-releasing peptide (GHRP-2) on plasma IGF-1 and IGFBPs in Holstein steers. Domest. Anim. Endocrinol. 28:134-146.
  64. Lee, H. G., H. Hidari, S. K. Kang, Z. S. Hong, C. X. Xu, S. H. Kim, K. S. Seo, D. H. Yoon, and Y. J. Choi. 2005b. The Relationships between plasma insulin-like growth factor (IGF)-1 and IGF-binding proteins (IGFBPs) to growth pattern, and characteristics of plasma IGFBPs in steers. Asian Australas. J. Anim. Sci. 18:1575-1581.
  65. Lents, C. A., R. P. Wettemann, F. J. White, I. Rubio, N. H. Ciccioli, L. J. Spicer, D. H. Keisler, and M. E. Payton. 2005. Influence of nutrient intake and body fat on concentrations of insulin-like growth factor-I, insulin, thyroxine, and leptin in plasma of gestating beef cows. J. Anim. Sci. 83:586-596.
  66. Luo, X. H., L. J. Guo, L. Q. Yuan, H. Xie, H. D. Zhou, X. P. Wu, and E. Y. Liao. 2005. Adiponectin stimulates human osteoblasts proliferation and differentiation via the MAPK signaling pathway. Exp. Cell Res. 309:99-109.
  67. Martins, K. J., I. MacLean, G. K. Murdoch, W. T. Dixon, and C. T. Putman. 2011. Nitric oxide synthase inhibition delays low-frequency stimulation-induced satellite cell activation in rat fast-twitch muscle. Appl. Physiol. Nutr. Metab. 36:996-1000.
  68. Matsumoto, K., S. Hashimoto, Y. Gon, T. Nakayama, and T. Horie. 1998. Proinflammatory cytokine-induced and chemical mediator-induced IL-8 expression in human bronchial epithelial cells through p38 mitogen-activated protein kinase-dependent pathway. J. Allergy Clin. Immunol. 101:825-831.
  69. Matthews, V., M.-B. Astrom, M. H. S. Chan, C. R. Bruce, K. S. Krabbe, O. Prelovsek, T. Akerström, C. Yfanti, C. Broholm, and O. Mortensen et al. 2009. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia 52:1409-1418.
  70. McCann, J. P., S. C. Loo, D. L. Aalseth, and T. Abribat. 1997. Differential effects of GH stimulation on fasting and prandial metabolism and plasma IGFs and IGF-binding proteins in lean and obese sheep. J. Endocrinol. 154:329-346.
  71. Memon, R. A., K. R. Feingold, A. H. Moser, J. Fuller, and C. Grunfeld. 1998. Regulation of fatty acid transport protein and fatty acid translocase mRNA levels by endotoxin and cytokines. Am. J. Physiol. - Endocrinol. Metab. 274:E210-E217.
  72. Misu, H., T. Takamura, H. Takayama, H. Hayashi, N. Matsuzawa-Nagata, S. Kurita, K. Ishikura, H. Ando, Y. Takeshita, and T. Ota et al. 2010. A liver-derived secretory protein, selenoprotein P, causes insulin resistance. Cell Metab. 12:483-495.
  73. Miura, P., A. Amirouche, C. Clow, G. Bélanger, and B. J. Jasmin. 2012. Brain‐derived neurotrophic factor expression is repressed during myogenic differentiation by miR‐206. J. Neurochem. 120:230-238.
  74. Morrison, C. D., J. A. Daniel, B. J. Holmberg, J. Djiane, N. Raver, A. Gertler, and D. H. Keisler. 2001. Central infusion of leptin into well-fed and undernourished ewe lambs: effects on feed intake and serum concentrations of growth hormone and luteinizing hormone. J. Endocrinol. 168:317-324.
  75. Mousavi, K. and B. J. Jasmin. 2006. BDNF is expressed in skeletal muscle satellite cells and inhibits myogenic differentiation. J. Neurosci. 26:5739-5749.
  76. Murata, Y., M. Konishi, and N. Itoh. 2011. FGF21 as an Endocrine Regulator in Lipid Metabolism: From Molecular Evolution to Physiology and Pathophysiology. J. Nutr. Metab. Article ID 981315.
  77. Nicola, N. 1994. Guidebook to Cytokines and Their Receptors. Oxford Univ. Press, Oxford, UK.
  78. Nieman, D. C., J. M. Davis, D. A. Henson, J. Walberg-Rankin, M. Shute, C. L. Dumke, A. C. Utter, D. M. Vinci, J. A. Carson, and A. Brown. 2003. Carbohydrate ingestion influences skeletal muscle cytokine mRNA and plasma cytokine levels after a 3-h run. J. Appl. Physiol. 94:1917-1925.
  79. Ohtani, Y., T. Takahashi, K. Sato, A. Ardiyanti, S. H. Song, R. Sato, K. Onda, Y. Wada, Y. Obara, K. Suzuki, A. Hagino, S. G. Roh, and K. Katoh. 2012. Changes in circulating adiponectin and metabolic hormone concentrations during periparturient and lactation periods in Holstein dairy cows. Anim. Sci. J. 83:788-795.
  80. Ohtani, Y., T. Yonezawa, S. H. Song, T. Takahashi, A. Ardiyanti, K. Sato, A. Hagino, S. G. Roh, and K. Katoh. 2011. Gene expression and hormonal regulation of adiponectin and its receptors in bovine mammary gland and mammary epithelial cells. Anim. Sci. J. 82:99-106.
  81. Oike, Y., M. Akao, K. Yasunaga, T. Yamauchi, T. Morisada, Y. Ito, T. Urano, Y. Kimura, Y. Kubota, and H. Maekawa, et al. 2005. Angiopoietin-related growth factor antagonizes obesity and insulin resistance. Nat. Med. 11:400-408.
  82. Pedersen, B. K. 2009. The diseasome of physical inactivity-and the role of myokines in muscle-fat cross talk. J. Physiol. 587: 5559-5568.
  83. Pedersen, B. K. 2011. Exercise-induced myokines and their role in chronic diseases. Brain Behav. Immun. 25:811-816.
  84. Pedersen, B. K. 2013. Muscle as a secretory organ. Compr. Physiol. 3:1337-1362.
  85. Pedersen, B. K., T. C. Akerstrom, A. R. Nielsen, and C. P. Fischer. 2007. Role of myokines in exercise and metabolism. J. Appl. Physiol. 103:1093-1098.
  86. Pedersen, B. K., M. Pedersen, K. S. Krabbe, H. Bruunsgaard, V. B. Matthews, and M. A. Febbraio. 2009. Role of exercise‐induced brain‐derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp. Physiol. 94:1153-1160.
  87. Pethick, D. W. and D. B. Lindsay. 1982. Metabolism of ketone bodies in pregnant sheep. Br. J. Nutr. 48:549-563.
  88. Roberts, C. A., S. N. McCutcheon, H. T. Blair, P. D. Gluckman, and B. H. Breier. 1990. Developmental patterns of plasma insulinlike growth factor-1 concentrations in sheep. Domest. Anim. Endocrinol. 7:457-463.
  89. Roberts, L. D., P. Bostrom, J. F. O'Sullivan, R. T. Schinzel, G. D. Lewis, A. Dejam, Y.-K. Lee, M. J. Palma, S. Calhoun, and A. Georgiadi. 2014. ${\beta}$-Aminoisobutyric acid induces browning of white fat and hepatic ${\beta}$-oxidation and is inversely correlated with cardiometabolic risk factors. Cell Metab. 19:96-108.
  90. Roh, S., I. J. Clarke, R. W. Xu, J. W. Goding, K. Loneragan, and C. Chen. 1998. The in vitro effect of leptin on basal and growth hormone-releasing hormone-stimulated growth hormone secretion from the ovine pituitary gland. Neuroendocrinology 68:361-364.
  91. Roh, S. G., D. Hishikawa, Y. H. Hong, and S. Sasaki. 2006. Control of adipogenesis in ruminants. Anim. Sci. J. 77:472-477.
  92. Roh, S. G., G. Y. Nie, K. Loneragan, A. Gertler, and C. Chen. 2001. Direct modification of somatotrope function by long-term leptin treatment of primary cultured ovine pituitary cells. Endocrinology 142:5167-5171.
  93. Roh, S. G., S. H. Song, K. C. Choi, K. Katoh, V. Wittamer, M. Parmentier, and S. Sasaki. 2007. Chemerin-A new adipokine that modulates adipogenesis via its own receptor. Biochem. Biophys. Res. Commun. 362:1013-1018.
  94. Ronge, H. and J. Blum. 1989. Insulin-like growth factor I during growth in bulls. Reprod. Nutr. Dev. 29:105-111.
  95. Ruan, H., P. D. Miles, C. M. Ladd, K. Ross, T. R. Golub, J. M. Olefsky, and H. F. Lodish. 2002. Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes 51:3176-3188.
  96. Ruan, H., M. J. Zarnowski, S. W. Cushman, and H. F. Lodish. 2003. Standard isolation of primary adipose cells from mouse epididymal fat pads induces inflammatory mediators and downregulates adipocyte genes. J. Biol. Chem. 278:47585-47593.
  97. Saito, Y., T. Hayashi, A. Tanaka, Y. Watanabe, M. Suzuki, E. Saito, and K. Takahashi. 1999. Selenoprotein P in human plasma as an extracellular phospholipid hydroperoxide glutathione peroxidase. Isolation and enzymatic characterization of human selenoprotein p. J. Biol. Chem. 274:2866-2871.
  98. Sakaguchi, S., J. Shono, T. Suzuki, S. Sawano, J. E. Anderson, M. K. Do, H. Ohtsubo, W. Mizunoya, Y. Sato, M. Nakamura, M. Furuse, K. Yamada, Y. Ikeuchi, and R. Tatsumi. 2014. Implication of anti-inflammatory macrophages in regenerative moto-neuritogenesis: promotion of myoblast migration and neural chemorepellent semaphorin 3A expression in injured muscle. Int. J. Biochem. Cell Biol. 54:272-285.
  99. Samitz, G., M. Egger, and M. Zwahlen. 2011. Domains of physical activity and all-cause mortality: systematic review and dose-response meta-analysis of cohort studies. Int. J. Epidemiol. 40:1382-1400.
  100. Sato, Y., M. K. Do, T. Suzuki, H. Ohtsubo, W. Mizunoya, M. Nakamura, M. Furuse, Y. Ikeuchi, and R. Tatsumi. 2013. Satellite cells produce neural chemorepellent semaphorin 3A upon muscle injury. Anim. Sci. J. 84:185-189.
  101. Sawano, S., T. Suzuki, M. K. Do, H. Ohtsubo, W. Mizunoya, Y. Ikeuchi, and R. Tatsumi. 2014. Supplementary immunocytochemistry of hepatocyte growth factor production in activated macrophages early in muscle regeneration. Anim. Sci. J. 85:994-1000.
  102. Scherer, P. E., S. Williams, M. Fogliano, G. Baldini, and H. F. Lodish. 1995. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem. 270:26746-26749.
  103. Schoenberg, K. M., S. L. Giesy, K. J. Harvatine, M. R. Waldron, C. Cheng, A. Kharitonenkov, and Y. R. Boisclair. 2011. Plasma FGF21 is elevated by the intense lipid mobilization of lactation. Endocrinology 152:4652-4661.
  104. Seidl, K., C. Erck, and A. Buchberger. 1998. Evidence for the participation of nerve growth factor and its low-affinity receptor (p75NTR) in the regulation of the myogenic program. J. Cell Physiol. 176:10-21.<10::AID-JCP2>3.0.CO;2-B
  105. Serrano, A. L., B. Baeza-Raja, E. Perdiguero, M. Jardi, and P. Munoz-Canoves. 2008. Interleukin-6 is an essential regulator of satellite cell-mediated skeletal muscle hypertrophy. Cell Metab. 7:33-44.
  106. Shono, J. I., S. Sakaguchi, T. Suzuki, M. K. Q. Do, W. Mizunoya, M. Nakamura, Y. Sato, M. Furuse, K. Yamada, Y. Ikeuchi, and R. Tatsumi. 2013. Preliminary time‐course study of antiinflammatory macrophage infiltration in crush‐injured skeletal muscle. Anim. Sci. J. 84:744-750.
  107. Soliman, M., K. Kimura, M. Ahmed, D. Yamaji, Y. Matsushita, Y. Okamatsu-Ogura, K. Makondo, and M. Saito. 2007. Inverse regulation of leptin mRNA expression by short- and long-chain fatty acids in cultured bovine adipocytes. Domest. Anim. Endocrinol. 33:400-409.
  108. Song, S. H., K. Fukui, K. Nakajima, T. Kozakai, S. Sasaki, S. G. Roh, and K. Katoh. 2010. Cloning, expression analysis, and regulatory mechanisms of bovine chemerin and chemerin receptor. Domest. Anim. Endocrinol. 39:97-105.
  109. Srinivas, P. R., A. S. Wagner, L. V. Reddy, D. D. Deutsch, M. A. Leon, A. S. Goustin, and G. Grunberger. 1993. Serum alpha 2-HS-glycoprotein is an inhibitor of the human insulin receptor at the tyrosine kinase level. Mol. Endocrinol. 7:1445-1455.
  110. Stanko, R. L., W. S. Cohick, D. W. Shaw, R. W. Harvey, D. R. Clemmons, M. D. Whitacre, and J. D. Armstrong. 1994. Effect of somatotropin and/or equine chorionic gonadotropin on serum and follicular insulin-like growth factor I and insulin-like growth factor binding proteins in cattle. Biol. Reprod. 50: 290-300.
  111. Starace, D., R. Galli, A. Paone, P. De Cesaris, A. Filippini, E. Ziparo, and A. Riccioli. 2008. Toll-like receptor 3 activation induces antiviral immune responses in mouse sertoli cells. Biol. Reprod. 79:766-775.
  112. Stefan, N. and H. U. Haring. 2013. The role of hepatokines in metabolism. Nat. Rev. Endocrinol. 9:144-152.
  113. Suzuki, T., M. K. Do, Y. Sato, K. Ojima, M. Hara, W. Mizunoya, M. Nakamura, M. Furuse, Y. Ikeuchi, J. E. Anderson, and R. Tatsumi. 2013. Comparative analysis of semaphorin 3A in soleus and EDL muscle satellite cells in vitro toward understanding its role in modulating myogenin expression. Int. J. Biochem. Cell Biol. 45:476-482.
  114. Suzuki, Y., Y. H. Hong, S. H. Song, A. Ardiyanti, D. Kato, K. H. So, K. Katoh, and S. G. Roh. 2012a. The regulation of chemerin and CMKLR1 genes expression by TNF-${\alpha}$, adiponectin, and chemerin analog in bovine differentiated adipocytes. Asian Australas. J. Anim. Sci. 25:1316-1321.
  115. Suzuki, Y., S. H. Song, K. Sato, K. H. So, A. Ardiyanti, S. Kitayama, Y. H. Hong, S. D. Lee, K. C. Choi, A. Hagino, K. Katoh, and S. G. Roh. 2012b. Chemerin analog regulates energy metabolism in sheep. Anim. Sci. J. 83:263-267.
  116. Suzuki, Y., D. Kato, M. Kondo, H. Hatanaka, S. Haga, K. T. Gotoh, and S.G. Roh. 2015. Expressional regulation of chemerin and its receptors in the liver and adipose tissues of young cattle by weaning and nutrition. 2015 ADSA-ASAS Joint Annual Meeting. Orlando, FL, USA.
  117. Suzuki, Y., S. Kitayama, M. Kondo, S. Haga, K. Katoh, and S. G. Roh. 2014. Chemerin mRNA Expression is regulated by insulin and fatty Acids in the liver of calves. Animal Production in Australia. Proceedings of the 30th Biennial Conference of the Australian. Canberra, Australia. 30:272.
  118. Tatsumi, R. 2010. Mechano‐biology of skeletal muscle hypertrophy and regeneration: Possible mechanism of stretch‐induced activation of resident myogenic stem cells. Anim. Sci. J. 81:11-20.
  119. Tatsumi, R. and R. E. Allen. 2004. Active hepatocyte growth factor is present in skeletal muscle extracellular matrix. Muscle Nerve 30:654-658.
  120. Tatsumi, R., and R. E. Allen. 2008. Mechano‐biology of resident myogenic stem cells: Molecular mechanism of stretch‐induced activation of satellite cells. Anim. Sci. J. 79:279-290.
  121. Tatsumi, R., J. E. Anderson, C. J. Nevoret, O. Halevy, and R. E. Allen. 1998. HGF/SF is present in normal adult skeletal muscle and is capable of activating satellite cells. Dev. Biol. 194:114-128.
  122. Tatsumi, R., A. Hattori, Y. Ikeuchi, J. E. Anderson, and R. E. Allen. 2002. Release of hepatocyte growth factor from mechanically stretched skeletal muscle satellite cells and role of pH and nitric oxide. Mol. Biol. Cell 13:2909-2918.
  123. Tatsumi, R., X. Liu, A. Pulido, M. Morales, T. Sakata, S. Dial, A. Hattori, Y. Ikeuchi, and R. E. Allen. 2006. Satellite cell activation in stretched skeletal muscle and the role of nitric oxide and hepatocyte growth factor. Am. J. Physiol. Cell Physiol. 290:C1487-C1494.
  124. Tatsumi, R., Y. Sankoda, J. E. Anderson, Y. Sato, W. Mizunoya, N. Shimizu, T. Suzuki, M. Yamada, R. P. Rhoads, Jr., Y. Ikeuchi, and R. E. Allen. 2009. Possible implication of satellite cells in regenerative motoneuritogenesis: HGF upregulates neural chemorepellent Sema3A during myogenic differentiation. Am. J. Physiol. Cell Physiol. 297:C238-C252.
  125. Tatsumi, R., S. M. Sheehan, H. Iwasaki, A. Hattori, and R. E. Allen. 2001. Mechanical stretch induces activation of skeletal muscle satellite cells in vitro. Exp. Cell Res. 267:107-114.
  126. Vega, R. A., H. G. Lee, H. Kuwayama, N. Matsunaga, and H. Hidari. 2002. Age-related changes in plasma leptin from early growing to late finishing stages of castrated Holstein steers: utilizing multi-species leptin RIA. Asian Australas. J. Anim. Sci. 15:725-731.
  127. Vernon, R. G. 2005. Lipid metabolism during lactation: a review of adipose tissue-liver interactions and the development of fatty liver. J. Dairy Res. 72:460-469.
  128. Vernon, R. G., R. G. Denis, and A. Sorensen. 2001. Signals of adiposity. Domest. Anim. Endocrinol. 21:197-214.
  129. Vicini, J. L., F. C. Buonomo, J. J. Veenhuizen, M. A. Miller, D. R. Clemmons, and R. J. Collier. 1991. Nutrient balance and stage of lactation affect responses of insulin, insulin-like growth factors I and II, and insulin-like growth factor-binding protein 2 to somatotropin administration in dairy cows. J. Nutr. 121:1656-1664.
  130. Wang, Y., F. Quagliarini, V. Gusarova, J. Gromada, D. M. Valenzuela, J. C. Cohen, and H. H. Hobbs. 2013. Mice lacking ANGPTL8 (Betatrophin) manifest disrupted triglyceride metabolism without impaired glucose homeostasis. Proc. Natl. Acad. Sci. USA 110:16109-16114.
  131. Wegner, J., P. Huff, C. P. Xie, F. Schneider, F. Teuscher, P. S. Mir, Z. Mir, E. C. Kazala, R. J. Weselake, and K. Ender. 2001. Relationship of plasma leptin concentration to intramuscular fat content in beef from crossbred Wagyu cattle. Can. J. Anim. Sci. 81:451-457.
  132. Wittamer, V., B. Bondue, A. Guillabert, G. Vassart, M. Parmentier, and D. Communi. 2005. Neutrophil-mediated maturation of chemerin: a link between innate and adaptive immunity. J. Immunol. 175:487-493.
  133. Wittamer, V., J. D. Franssen, M. Vulcano, J. F. Mirjolet, E. Le Poul, I. Migeotte, S. Brezillon, R. Tyldesley, C. Blanpain, M. Detheux, A. Mantovani, S. Sozzani, G. Vassart, M. Parmentier, and D. Communi. 2003. Specific recruitment of antigen-presenting cells by chemerin, a novel processed ligand from human inflammatory fluids. J. Exp. Med. 198:977-985.
  134. Wittamer, V., F. Gregoire, P. Robberecht, G. Vassart, D. Communi, and M. Parmentier. 2004. The C-terminal nonapeptide of mature chemerin activates the chemerin receptor with low nanomolar potency. J. Biol. Chem. 279:9956-9962.
  135. Wozniak, A. C. and J. E. Anderson. 2007. Nitric oxide-dependence of satellite stem cell activation and quiescence on normal skeletal muscle fibers. Dev. Dyn. 236:240-250.
  136. Wozniak, A. C., J. Kong, E. Bock, O. Pilipowicz, and J. E. Anderson. 2005. Signaling satellite-cell activation in skeletal muscle: markers, models, stretch, and potential alternate pathways. Muscle Nerve 31:283-300.
  137. Xu, A., M. C. Lam, K. W. Chan, Y. Wang, J. Zhang, R. L. Hoo, J. Y. Xu, B. Chen, W. S. Chow, A. W. Tso, and K. S. Lam. 2005. Angiopoietin-like protein 4 decreases blood glucose and improves glucose tolerance but induces hyperlipidemia and hepatic steatosis in mice. Proc. Natl. Acad. Sci. USA 102: 6086-6091.
  138. Yamada, M., Y. Sankoda, R. Tatsumi, W. Mizunoya, Y. Ikeuchi, K. Sunagawa, and R. E. Allen. 2008. Matrix metalloproteinase-2 mediates stretch-induced activation of skeletal muscle satellite cells in a nitric oxide-dependent manner. Int. J. Biochem. Cell Biol. 40:2183-2191.
  139. Yamada, M., R. Tatsumi, T. Kikuiri, S. Okamoto, S. Nonoshita, W. Mizunoya, Y. Ikeuchi, H. Shimokawa, K. Sunagawa, and R. E. Allen. 2006. Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve 34:313-319.
  140. Yamada, M., R. Tatsumi, K. Yamanouchi, T. Hosoyama, S. Shiratsuchi, A. Sato, W. Mizunoya, Y. Ikeuchi, M. Furuse, and R. E. Allen. 2010. High concentrations of HGF inhibit skeletal muscle satellite cell proliferation in vitro by inducing expression of myostatin: A possible mechanism for reestablishing satellite cell quiescence in vivo. Am. J. Physiol. Cell Physiol. 298:C465-C476.
  141. Yamauchi, E., Y. Suzuki, K.-H. So, K.-I. Suzuki, K. Katoh, and S.- G. Roh. 2015. Single Nucleotide polymorphism in the coding region of bovine chemerin gene and their associations with carcass traits in Japanese black cattle. Asian Australas. J. Anim. Sci. 28:1084-1089.
  142. Yamauchi, T., J. Kamon, H. Waki, Y. Terauchi, N. Kubota, K. Hara, Y. Mori, T. Ide, K. Murakami, N. Tsuboyama-Kasaoka, O. Ezaki, Y. Akanuma, O. Gavrilova, C. Vinson, M. L. Reitman, H. Kagechika, K. Shudo, M. Yoda, Y. Nakano, K. Tobe, R. Nagai, S. Kimura, M. Tomita, P. Froguel, and T. Kadowaki. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941-946.
  143. Yi, P., J. S. Park, and D. A. Melton. 2013. Betatrophin: a hormone that controls pancreatic beta cell proliferation. Cell 153:747-758.
  144. Yonekura, S., S. Hirota, Y. Tokutake, M. T. Rose, K. Katoh, and H. Aso. 2014. Dexamethasone and acetate modulate cytoplasmic leptin in bovine preadipocytes. Asian Australas. J. Anim. Sci. 27:567-573.
  145. Zhang, Y., R. Proenca, M. Maffei, M. Barone, L. Leopold, and J. M. Friedman. 1994. Positional cloning of the mouse obese gene and its human homologue. Nature 372:425-432.
  146. Zieba, D. A., M. Amstalden, S. Morton, J. L. Gallino, J. F. Edwards, P. G. Harms, and G. L. Williams. 2003. Effects of leptin on basal and GHRH-stimulated GH secretion from the bovine adenohypophysis are dependent upon nutritional status. J. Endocrinol. 178:83-89.

Cited by

  1. Anti-obese effect of iodine-enriched yolk in cultured adipocytes vol.87, pp.4, 2016,
  2. Limits on hogget lambing: the fertility of the young ewe vol.60, pp.1, 2017,
  3. High non-esterified fatty acid concentrations promote expression and secretion of fibroblast growth factor 21 in calf hepatocytes cultured in vitro pp.09312439, 2017,