DOI QR코드

DOI QR Code

Influence of Various Additional Elements in Al Based Filler Alloys for Automotive and Brazing Industry

  • Received : 2015.08.14
  • Accepted : 2015.09.10
  • Published : 2015.10.01

Abstract

Aluminium and its alloys are widely used in brazing various components in automotive industries due to their properties like lightweight, excellent ductility, malleability and formability, high oxidation and corrosion resistance, and high electrical and thermal conductivity. However, high machinability and strength of aluminium alloys are a serious concern during casting operations. The generation of porosity caused by dissolved gases and modifiers affects seriously the strength and quality of cast product. Brazing of Al and its alloys requires careful monitoring of temperature since theses alloys are brazed at around the melting temperature in most of the aluminium alloys. Therefore, the development of low temperature brazing filler alloys as well as superior strength Al alloys for various engineering applications is always in demand. In various heat exchangers and automotive applications, poor strength of Al alloys is due to the inherent porosities and casting defects. The unstable mechanical properties is therefore needed to be controlled by adding various additive elements in the aluminium and its alloys, by a change in the heat treatment procedure or by modifying the microstructure. In this regard, this article reports the effect of various elements added in aluminium alloys to improve microstructure, brazeability, machinability, castability as well as to stabilize the mechanical properties.

Keywords

Al alloy;Brazing;Microstructure;Strength;Automotive;Temperature

References

  1. I.J. Polmear, Light alloys From traditional alloys to nanocrystals, 4th ed., Elsevier-Butterworth Heinemann, (2006)
  2. B Altshuller: Aluminum Brazing Handbook, 4th ed., The Aluminum Association, Inc, (1990)
  3. A.H. Musfirah and A.G. Jaharah, Magnesium and Aluminum Alloys in Automotive Industry, J. Appl. Sci. Res., 8 (2012), 4865-4875
  4. F. Stadler, H. Antrekowitsch, W. Fragner, H. Kaufmann and P. J. Uggowitzer, Effect of main alloying elements on strength of Al-Si foundry alloys at elevated temperatures, Int. J. Cast Metal. Res., 25 (2012), 215-224 https://doi.org/10.1179/1743133612Y.0000000004
  5. C.J. Hang, C.Q. Wang, M. Mayer, Y.H. Tian, Y. Zhou and H.H. Wang, Growth behavior of Cu/Al intermetallic compounds and cracks in copper ball bonds during isothermal aging, Microelectron. Reliab., 48 (2008), 416-424 https://doi.org/10.1016/j.microrel.2007.06.008
  6. M. H. Larsen, J. C. Walmsley, O. Lunder, R. H. Mathiesen, and K. Nisancioglu, Intergranular Corrosion of Copper-Containing AA6xxx AlMgSi aluminium alloys, J. Electrochem. Soc., 155 (11) (2008), C550-C556 https://doi.org/10.1149/1.2976774
  7. K. Thulukkanam, Heat Exchanger Design Handbook, 2nd ed., CRC press, Taylor and Francis group, Florida USA, 2013
  8. L.C. Tsao, W.P. Weng, M.D. Cheng, C.W. Tsao and T.H. Chuang, J. Mater. Eng. Perform., 11 (2002), 360-364. https://doi.org/10.1361/105994902770343863
  9. J.R. Davis, Aluminum and aluminum alloys, J. R. Davis & Associates, ASM International.
  10. Handbook Committee, 3-8.
  11. W.F. Smith, Principles of Materials Science and Engineering, McGraw-Hill, Inc. (1995)
  12. G. Venkatasubramanian, A. S. Mideen, A. K. Jha, Indian J. Sci. Technol., 5 (11) (2012), 3578-3583
  13. S.G. Shabestari, H. Moemeni, Effect of copper and solidification conditions on the microstructure and mechanical properties of Al-Si-Mg alloys, J. Mat. Process. Technol., 153-154 (2004), 193-198 https://doi.org/10.1016/j.jmatprotec.2004.04.302
  14. M. Zeren, Effect of copper and silicon content on mechanical properties in Al-Cu-Si-Mg alloys, J. Mater. Process. Technol., 169 (2005), 292-298 https://doi.org/10.1016/j.jmatprotec.2005.03.009
  15. H. Elzanaty, Effect of different Si content on the mechanical properties in the Al-based alloy, International Journal of Research in Engineering & Technology (IMPACT: IJRET), 2 (7) (2014), 49-54
  16. H. Nayeb-Hashemi, M. Lockwood, The effect of processing variables on the microstructures and properties of aluminum brazed joints, J. Mat. Sci., 37 (2002), 3705-3713 https://doi.org/10.1023/A:1016517510260
  17. D.M. Jacobson, G. Humpston, S.P.S. Sangha, Welding Research Supplement, 8 (1996), 243s-250s.
  18. J.L. Murray, A.J. McAlister, ASM Handbook Volume 3: Alloy Phase Diagrams, (1992), 312
  19. W. Dai, Song-bai Xue, F. Ji, J. Lou, B. Sun and Shui-qing Wang, Brazing 6061 aluminum alloy with Al-Si-Zn filler metals containing Sr, Int. J. Min. Met. Mater., 20 (2013), 365-370 https://doi.org/10.1007/s12613-013-0736-1
  20. Z. Niu, J. Huang, H. Yang, S. Chen and X. Zhao, Preparation and properties of a novel Al-Si-Ge-Zn filler metal for brazing aluminum, J. Mater. Eng. Perform., (2015), in press. DOI: 10.1007/s11665-015-1509-y. https://doi.org/10.1007/s11665-015-1509-y
  21. L.C. Tsao, M.J. Chiang, W.H. Lin, M.D. Cheng, T.H. Chuang, Effects of zinc additions on the microstructure and melting temperatures of Al-Si-Cu filler metals, Materials Characterization, 48 (2002), 341-346 https://doi.org/10.1016/S1044-5803(02)00276-0
  22. E. Romhanji, M. Popovic, Problems and prospect of Al-Mg alloy applications in marine constructions, Association of Metallurgical Engineers of Serbia, Metallurgija-Journal of Metallurgy, 297-307.
  23. R. Mundt, Hoogovens, Koblenz, Introduction to Brazing of Aluminium Alloys, TALAT Lecture 4601, European Aluminium Association, 1-24
  24. Solberg, J.K., Teknologiske metaller og legeringer, NTNU, Editor. (2010)
  25. A.K. Gupta, D.J. Lloyd, S.A. Court, Precipitation hardening in Al-Mg-Si alloys with and without excess Si, Mat. Sci. Eng. A, 316 (2001), 11-17. https://doi.org/10.1016/S0921-5093(01)01247-3
  26. J.P. Lynch, L.M. Brown, M.H. Jacobs, Microanalysis of age-hardening precipitates in aluminium alloys, Acta Metallurgica, 30 (1982), 1389-1395. https://doi.org/10.1016/0001-6160(82)90159-6
  27. J. Aucote, D.W. Evans, Effects of excess silicon addition on ductility of Al-0.95%Mg2Si Alloy, Mat. Sci. Technol., 12 (1978) 57-63. https://doi.org/10.1021/es60137a010
  28. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, L. Lu, Eutectic modification and microstructure development in Al-Si Alloys, Mat. Sci. Eng. A, 413-414 (2005) 243-248. https://doi.org/10.1016/j.msea.2005.09.055
  29. F. Stadler, H. Antrekowitschn, W. Fragner, H. Kaufmann, E.R. Pinatel, P.J. Uggowitzer, The effect of main alloying elements on the physical properties of Al-Si foundry alloys, Mat. Sci. Eng. A 560 (2013), 481-491 https://doi.org/10.1016/j.msea.2012.09.093
  30. E.M. Elgallad, A.M. Samuel, F.H. Samuel, H.W. Doty, Effects of additives on the microstructures and tensile properties of a new Al-Cu based alloy intended for automotive castings, AFS Transactions, American Foundary Society, Paper 10-42, IL, USA, (2010), 1-24
  31. J. Li, Y. Liu, Y. Tan, Y. Li, L. Zhang, S. Wu, P. Jia, Effect of tin addition on primary silicon recovery in Si-Al melt during solidification refining of silicon, J. Cryst. Growth, 371 (2013) 1-6 https://doi.org/10.1016/j.jcrysgro.2012.12.098
  32. T.H. Chung, M.S. Yeh, L.C. Tsao, T.C. Tsai, and C.S. Wu, Development of a Low-Melting-Point Filler Metal for Brazing Aluminum Alloys, Met. Mat. Trans. A, 31A (2000), 2239-2245.
  33. S. Zor, M. Zeren, H. Ozkazan, and E. Karakulak, Effect of Titanium Addition on Corrosion Properties of Al-Si Eutectic Alloys, Protection of Metals and Physical Chemistry of Surfaces, 48 (5), (2012), 568-571 https://doi.org/10.1134/S2070205112050176
  34. M. Jaradeh, T. Carlberg, Effect of titanium additions on the microstructure of DC-cast aluminium alloys, Mat. Sci. Eng. A, 413-414 (2005), 277-282 https://doi.org/10.1016/j.msea.2005.09.006
  35. Y. Birol, A novel Al-Ti-B alloy for grain refining Al-Si foundry alloys, J. Alloy. Compd., 486 (2009), 219-222 https://doi.org/10.1016/j.jallcom.2009.07.064
  36. T. N. Ware, A. K. Dahle, S. Charles, M. J. Couper, Effect of Sr, Na, Ca & P on the Castability of Foundry Alloy A356.2, ASM Materials Solutions 2002 Conference & Exposition, 2nd International Aluminium Casting Technology Symposium, Columbus, Ohio, USA, October (2002), 1-10.
  37. Chen Zhongwei, Zhang Ruijie, Effect of strontium on primary dendrite and eutectic temperature of A357 aluminum alloy, China Foundry, 7 (2) (2010), 149-152
  38. B.N. Sarada, P.L. Srinivasamurthy, Swetha, Microstructural characteristics of Sr and Na modified Al-Mg-Si alloy, Int. J. Innovative Res. Sci., Eng. Tech., 2 (8) (2013), 3975-3983
  39. L. Wang, S Shivakumar, Strontium modification of aluminium alloy castings in the expendable pattern casting process, J. Mat. Sci., 30 (1995), 1584-1594 https://doi.org/10.1007/BF00375269
  40. J. F. Major, J. W. Rutter, Effect of strontium and phosphorus on solid/liquid interface of Al-Si eutectic, Mater. Sci. Technol., 5 (1989), 645-656 https://doi.org/10.1179/mst.1989.5.7.645
  41. Masoumeh Faraji and Hamid Khalilpour, Effect of Phosphorous Inoculation on Creep Behavior of a Hypereutectic Al-Si Alloy, JMEPEG (2014) 23:3467-3473 https://doi.org/10.1007/s11665-014-1152-z
  42. M. O. Krasovskii1 and V. O. Lavrenko, Effect of antimony and bismuth on the electrochemical corrosion of the cast aluminium silicon alloys in 3% NaCl solution, Powder Metallurgy and Metal Ceramics, 49 (11-12) 716-721
  43. S. Farhany, A. Ourdjini, M. H. Iidris, L. T. Thai, Effect of bismuth on microstructure of unmodified and Sr-modified Al-7Si-0.4Mg alloys, Trans. Nonferrous. Met. Soc. China, 21 (2011), 1455-1464.
  44. S. Farahany, A. Ourdjini, T. A. Abu Bakar, M. H. Idris, Role of Bismuth on solidification, microstructure and mechanical properties of a near eutectic Al-Si Alloys, Met. Mater. Int., 20 (5) (2014), 929-938 https://doi.org/10.1007/s12540-014-5019-5
  45. S. Khan, R Elliott, Effect of antimony on the growth kinetics of aluminium-silicon alloys, J. Mat. Sci., 29 (1994), 736-741 https://doi.org/10.1007/BF00445987
  46. Chikezie W. Onyia, Boniface A. Okorie, Simeon I. Neife, Camillus S. Obayi, Structural modification of sand cast eutectic Al-Si alloys with sulfur/sodium and its effect on mechanical properties, World Journal of Engineering and Technology, 1 (2013) 9-16 https://doi.org/10.4236/wjet.2013.12002
  47. J. Kajornchaiyakul, R. Sirichaivejakul, N. Moonrin, Solidification characteristics and mechanical properties of hypoeutectic aluminium-silicon alloy containing sulfur, la metallurgia italiana, 10 (2005), 47-50
  48. S. W. Nam, D. H. Lee, The effect of Mn on the mechanical behavior of Al alloys, Metals and Materials, 6 (1) (2000), 13-16 https://doi.org/10.1007/BF03026339
  49. A. Darvishi, A. Maleki, M. M. Atabaki, M. Zargami, Association of Metallurgical Engineers of Serbia, MJoM, 16 (1) (2010), 11-24
  50. T. O. Mbuyaa, B. O. Odera, S. P. Nganga, Influence of iron on castability and properties of aluminium silicon alloys: literature review, International Journal of Cast Metals Research, 15 (2003), 451-465 https://doi.org/10.1080/13640461.2003.11819527
  51. N. L. Sukiman, X. Zhou, N. Birbilis, A.E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson, Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments, In: Aluminium Alloys, Intech, ISBN 980-953-307-512-4. (2012)
  52. M.J. Zhu, D.Y. Ding, Y.J. Gao, G.Z. Chen, M. Li, D.L. Mao, Effect of Zn content on tensile and electrochemical properties of 3003 Al alloy, Trans. Nonferrous Met. Soc. China, 20 (2010) 2118-2123 https://doi.org/10.1016/S1003-6326(09)60427-1
  53. M.C. Carroll, P.I. Gouma, M.J. Mills, G.S. Daehn and B.R. Dunbar, Effects of Zn additions on the grain boundary precipitation and corrosion of Al 5083, Scripta mater., 42 (2000), 335-340 https://doi.org/10.1016/S1359-6462(99)00349-8
  54. Z. Li, A. M. Samuel, F. H. Samuel, C. Ravindran, S. Valtierra, Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys, J. Mat. Sci., 38 (2003), 1203-1218 https://doi.org/10.1023/A:1022857703995
  55. Shouxun Ji, Wenchao Yang, Feng Gao, Douglas Watson, Zhongyun Fan, Effect of iron on the microstructure and mechanical property of Al-Mg-Si-Mn and Al-Mg-Si diecast alloys, Mat. Sci. Eng. A, 564 (2013), 130-139 https://doi.org/10.1016/j.msea.2012.11.095
  56. Y. Wang, Y. Xiong, Effects of beryllium in Al-Si-Mg-Ti cast alloy, Mat. Sci. Eng. A, 280 (2000), 124-127 https://doi.org/10.1016/S0921-5093(99)00677-2
  57. S. Murali, A. Trivedi, K.S. Shamanna, and K.S.S. Murthy, Effect of iron and combined iron and beryllium additions on the fracture toughness and microstructures of squeeze cast Al-7Si-0.3Mg alloy, JMEPEG 5 (1996), 462-468 https://doi.org/10.1007/BF02648843
  58. K. Venkateswarlu, V. Rajinikanth, Ajoy Kumar Ray, Cheng Xu, Terence G. Langdon, Effect of Scandium addition on an Al-2%Si alloy processed by ECAP, Rev. Adv Mater. Sci. 25 (2010), 99-106.
  59. L. L. Rokhlin, T. V. Dobatkina, N. R. Bochvar, E. V. Lysova, and I. E. Tarytina, Effect of Yttrium and Chromium on the Recrystallization of Al-Sc Alloys, Russian Metallurgy (Metally), 2007 (4) (2007), 335-339 https://doi.org/10.1134/S0036029507040131
  60. D.H. Xiao, J.N. Wang, D.Y. Ding, H.L. Yang, Effect of rare earth Ce addition on the microstructure and mechanical properties of an Al-Cu-Mg-Ag alloy, J. Alloy. Compd., 352 (2003), 84-88 https://doi.org/10.1016/S0925-8388(02)01162-3
  61. Tao Lu, Ye Pan, Ji-li Wu, Shi-wen Tao, and Yu Chen, Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys, International Journal of Minerals, Metallurgy and Materials, 22 (4), (2015), 405-410 https://doi.org/10.1007/s12613-015-1086-y
  62. X. M. Zhang, W. T. Wang, B. Liu, M.A. Chen, Y. Liu, Z.G. Gao, L.Y. Ye, Y.Z. Jia, Effect of Nd addition on microstructures and heat resisting properties of 2519 aluminum alloy, The Chinese Journal of Nonferrous Metals, 19(1) (2009), 15-20
  63. D.H. Xiao, BY Huang, Effect of Yb addition on precipitation and microstructure of Al-Cu-Mg-Ag alloys, Trans. Nonferrous Met. Soc. China, 17 (2007), 1181-1185 https://doi.org/10.1016/S1003-6326(07)60246-5
  64. Min Song, Zhenggang Wu, Yuehui He, Effects of Yb on the mechanical properties and microstructures of an Al-Mg alloy, Mat. Sci. Eng. A, 497 (2008), 519-523 https://doi.org/10.1016/j.msea.2008.07.020
  65. Ho-Cheon Yoo and Hwan-Tae Kim, Recent Technological Tendency of Joining for Lignt Aluminium Alloy, Journal of KWJS, 29 (3) (2011), 260-269 (in Korean)
  66. O.S. Song, C.S. Kang, A Study on Friction Welding of 2024 Aluminium, Journal of KWS, 8 (3) (1990), 24-30 (in Korean)

Cited by

  1. Enhancement of the Mechanical Properties in Al–Si–Cu–Fe–Mg Alloys with Various Processing Parameters vol.11, pp.11, 2018, https://doi.org/10.3390/ma11112150
  2. Unsteady-State Horizontal Solidification of an Al–Si–Cu–Fe Alloy: Relationship Between Thermal Parameters and Microstructure with Mechanical Properties/Fracture Feature pp.2005-4149, 2018, https://doi.org/10.1007/s12540-018-0174-8
  3. Effect of different nanoparticles on microstructure, wetting and joint strength of Al–12Si–20Cu braze filler vol.6, pp.5, 2019, https://doi.org/10.1088/2053-1591/ab03e5

Acknowledgement

Supported by : Korea Institute of Energy Technology Evaluation and Planning (KETEP)