DOI QR코드

DOI QR Code

Importance of FISH combined with Morphology, Immunophenotype and Cytogenetic Analysis of Childhood/Adult Acute Lymphoblastic Leukemia in Omani Patients

  • Goud, Tadakal Mallana (National Genetic Centre, Ministry of Health) ;
  • Al Salmani, Kamla Khalfan (National Genetic Centre, Ministry of Health) ;
  • Al Harasi, Salma Mohammed (National Genetic Centre, Ministry of Health) ;
  • Al Musalhi, Muhanna (Division of Oncology, Royal Hospital, Ministry of Health) ;
  • Wasifuddin, Shah Mohammed (Division of Oncology, Royal Hospital, Ministry of Health) ;
  • Rajab, Anna (National Genetic Centre, Ministry of Health)
  • Published : 2015.11.04

Abstract

Genetic changes associated with acute lymphoblastic leukemia (ALL) provide very important diagnostic and prognostic information with a direct impact on patient management. Detection of chromosome abnormalities by conventional cytogenetics combined with fluorescence in situ hybridization (FISH) play a very significant role in assessing risk stratification. Identification of specific chromosome abnormalities has led to the recognition of genetic subgroups based on reciprocal translocations, deletions and modal number in B or T-cell ALL. In the last twelve years 102 newly diagnosed childhood/adult ALL bone marrow samples were analysed for chromosomal abnormalities with conventional G-banding, and FISH (selected cases) using specific probes in our hospital. G-banded karyotype analysis found clonal numerical and/or structural chromosomal aberrations in 74.2% of cases. Patients with pseudodiploidy represented the most frequent group (38.7%) followed by high hyperdiploidy group (12.9%), low hyperdiploidy group (9.7%), hypodiploidy (<46) group (9.7%) and high hypertriploidy group (3.2%). The highest observed numerical chromosomal alteration was high hyperdiploidy (12.9%) with abnormal karyotypes while abnormal 12p (7.5%) was the highest observed structural abnormality followed by t(12;21)(p13.3;q22) resulting in ETV6/RUNX1 fusion (5.4%) and t(9;22)(q34.1;q11.2) resulting in BCR/ABL1 fusion (4.3%). Interestingly, we identified 16 cases with rare and complex structural aberrations. Application of the FISH technique produced major improvements in the sensitivity and accuracy of cytogenetic analysis with ALL patients. In conclusion it confirmed heterogeneity of ALL by identifying various recurrent chromosomal aberrations along with non-specific rearrangements and their association with specific immunophenotypes. This study pool is representative of paediatric/adult ALL patients in Oman.

Keywords

Cytogenetics;FISH;prognosis;t(12;21)/ETV6-RUNX1;11q23/KMT2A

References

  1. Al-Bahar, Zamecnikova A, Pandita R (2010). Frequency and type of chromosomal abnormalities in childhood acute lymphoblastic leukemia patients in kuwait:a six-year retrospective study. Med Princ Pract, 19, 176-81. https://doi.org/10.1159/000285281
  2. Al-Shehhi H, Konn ZJ, Schwab CJ, et al (2013). Abnormalities of the der(12)t(12;21) in ETV6-RUNX1 acute lymphoblastic Leukemia. Genes Chromosomes Cancer, 52, 202-13. https://doi.org/10.1002/gcc.22021
  3. Awan T, Iqbal Z, Aleem A, et al (2012). Five most common prognostically important fusion oncogenes are detected in the majority of Pakistani pediatricacute lymphoblastic leukemia patients and are strongly associated with disease biology and treatment outcome. Asian Pac J Cancer Prev, 13, 5469-75. https://doi.org/10.7314/APJCP.2012.13.11.5469
  4. Bennet JM, Catovsky D, Daniel MT, et al (1976). Proposal for the classification of the acute lymphoblastic leukemias. French-American-British co-operative group. Br J Haematol, 33, 451-8. https://doi.org/10.1111/j.1365-2141.1976.tb03563.x
  5. Bhojwani D, Pei D, Sandlund JT, et al (2012). ETV6-RUNX1-positive childhood acute lymphoblastic leukemia: improved outcome with contemporary therapy. Leukemia, 26, 265-70. https://doi.org/10.1038/leu.2011.227
  6. Chan LC, Ha SY, Ching LM, et al (1994). Cytogenetics and immunophenotypes of childhood acute lymphoblastic leukemia in Honk Kong. Cancer Genet Cytogenet, 76, 118-24. https://doi.org/10.1016/0165-4608(94)90461-8
  7. Chang HH, Lu MY, Jou ST, Lin KH, Tien HF, Lin DT (2006). Cytogenetics in childhood acutelymphoblastic leukemia in Taiwan: a single-institutional experience. Pediatr Hematol Oncol, 23, 495-506. https://doi.org/10.1080/08880010600739368
  8. Chen Z (2006). Molecular cytogenetic markers related to prognosis in hematological malignancies. World J Pediatr, 4, 252-9.
  9. De Braekeleer M, Morel F, Le Bris MJ(2005). The MLL gene and translocations involving chromosomal band 11q23 in acute leukemia. Anticancer Res, 25, 1931-44.
  10. De Braekeleer E (July 2010). Cytogenetics in pre-B and B-cell acute lymphoblastic leukemia: a study of 208 patients diagnosed between 1981 and 2008. Cancer Genetics and Cytogenetics volume 200 Issue, 1, 8-15. https://doi.org/10.1016/j.cancergencyto.2010.03.004
  11. Douet-Guilbert N, Morel F, Le Bris MJ, et al (2003). A fluorescence in situ hybridization study of TEL-AML1 fusion in B-cell acute lymphoblastic leukemia (1984-2001). Cancer Genet Cytogenet, 144, 143-7. https://doi.org/10.1016/S0165-4608(02)00932-9
  12. Fenaux P, Lai JL, Morel P, et al (1989). Cytogenetic and their prognostic value in childhood and adult acute lymphoblastic (ALL) excluding L3. Hematol Oncol, 7, 307-17 https://doi.org/10.1002/hon.2900070409
  13. Ferrando AA, Look AT (2000). Clinical implications of recurring chromosomal and associated molecular abnormalities in acute lymphoblastic leukemia. Semin Hematol, 37, 381-95. https://doi.org/10.1016/S0037-1963(00)90018-0
  14. Forestier E, Gustafsson G, Heideman A, et al (1997). Prognostic impact of bone marrow karyotype inchildhood acute lymphoblastic leukemia: Swedish experiences 1986-91. Acta Pediatr, 86, 819-25.
  15. Gimidene A, Sennana H, Elgezal H, et al (2008). Cytogenetic analysis of 298 newly diagnosed cases of acute lymphoblastic leukemia in Tunisia. Hematol Oncol, 26, 91-7. https://doi.org/10.1002/hon.840
  16. Hashem S, Mazloumi M, Madhumathi DS, Appaji L, Prasannakumari (2012). Combined study of cytogenetics and fluorescence in situ hybridization (FISH) analysis in childhood acute lymphoblastic leukemia (ALL) in a Tertiary cancer centre in South India. Asian Pacific J Cancer Prev, 13, 3825-27. https://doi.org/10.7314/APJCP.2012.13.8.3825
  17. Harrison CJ (2001). The detection and significance of chromosomal abnormalities in childhood acute lymphoblastic leukemia. Blood Rev, 15, 49-59. https://doi.org/10.1054/blre.2001.0150
  18. Harrison CJ, Faroni L (2002). Cytogenetic and molecular genetics of acute lymphoblastic leukemia. Rev Clin Exp Hematol, 6, 91-113. https://doi.org/10.1046/j.1468-0734.2002.00069.x
  19. Harrison CJ, Moorman AV, Barber KE, et al (2005). Interphase molecular cytogenetic screening for chromosomal abnormalities of prognostic significance in childhood acute lymphoblastic leukaemia: a UK Cancer Cytogenetics Group Study. Br J Haematol, 129, 520-30. https://doi.org/10.1111/j.1365-2141.2005.05497.x
  20. Heerema NA, Nachman JB, Sather HN, et al (1999). Hypodiploidy with less than 45 chromosomes confers adverse risk in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Blood, 94, 4036-45.
  21. Heerema NA, Sather HN, Sensel MG, et al (1999). Association of chromosome arm 9p abnormalities with adverse risk in childhood acute lymphoblastic leukemia: a report from children's cancer group. Blood, 94, 1537-44.
  22. Heerema NA, Sather HN, Sensel MG, et al (2000). Clinical significance of deletions of chromosome 6q in childhood acute lymphoblastic leukemia: a report from the children’s cancer group. Leuk Lymphoma, 36, 467-78. https://doi.org/10.3109/10428190009148394
  23. Hu L, Ru K, Zhang L, et al (2014). Fluorescence in situ hybridization (FISH): an increasingly demanded tool for biomarker research and personalized medicine. Biomarker Research. 2, 3. https://doi.org/10.1186/2050-7771-2-3
  24. ISCN 2013 In: An International System for Human Cytogenetic Nomenclature. Mitelman F, editors. Basel, Switzerland: S. Karger.
  25. Jennigs CD, Foon KA (1997). Recent advances in flow cytometry:application to the diagnosis of hematologic malignancy. Blood, 90, 2863-92.
  26. Johansson B (2009). High hyperdiploid childhood acute lymphoblastic leukemia. Genes Chromosomes Cancer, 48, 637-60. https://doi.org/10.1002/gcc.20671
  27. Kebriaei P, AnastasiJ, Larson RA (2003). Acute lymphoblastic leukemia: diagnosis and classification. Best Pract Res Clin Haematol, 15, 597-621.
  28. Kwon YJ, Lee JW, Kim MS, et al (2009). Cytogenetic analysis in childhood acute lymphoblastic leukemia: experience at a single institution in Korea. Int J Hematol, 89, 150-8. https://doi.org/10.1007/s12185-008-0231-z
  29. Mehdipour P, Mirfakhraie R, Jahani M, et al (2003). Karyotypic evolution: cytogenetics follow-up study in childhood acute lymphoblastic leukemia. Asian Pac J Cancer Prev, 4, 358-68.
  30. Moorman AV, Harrison CJ, Buck GA, et al (2007). Karyotype is an independent prognostic factor in adult acute lymphoblastic leukemia (ALL): analysis of cytogenetic data from patients treated on the medical research council (MRC) UKALLXII/eastern cooperative oncology group (ECOG) 2993 trial. Blood, 109, 3189-97. https://doi.org/10.1182/blood-2006-10-051912
  31. Moorman AV, Chilton L, Wilkinson J, et al (2010). A populationbased cytogenetic study of adults with acute lymphoblastic leukemia. Blood, 115, 206-14. https://doi.org/10.1182/blood-2009-07-232124
  32. Mroz'ek K, Heerema NA, Bloomfield CD (2004). Cytogenetics in acute leukemia. Blood Rev, 18, 115-36. https://doi.org/10.1016/S0268-960X(03)00040-7
  33. NordgrenA, Heyman M, Sahlen S, et al (2002). Spectralkaryotyping and interphase FISH reveal abnormalities not detected by conventional G-banding. Implications for treatment stratification of childhood acute lymphoblastic leukaemia: detailed analysis of 70 cases. Eur J Haematol, 68, 31-41. https://doi.org/10.1034/j.1600-0609.2002.00547.x
  34. Perez-Vera P, Muzica-Sanchez M, Carnevale A, et al (2001). Cytogenetics in acute lymphoblastic leukemia in mexican children: an institutional experience. Arch Med Res, 32, 202-07. https://doi.org/10.1016/S0188-4409(01)00260-0
  35. Petkovic I, Josip K, Nakic M, Kastelan M (1996). Cytogenetic, cytomorphologic and immunologic analysis in 55 children with acute lymphoblastic leukemia: Cancer Genet Cytogenet, 88, 57-65. https://doi.org/10.1016/0165-4608(95)00293-6
  36. Pui CH, Carroll AJ, Head D, et al (1990). Near-triploid and Near-tetraploid acute lymphoblastic leukemia of childhood. Blood, 76, 590-6.
  37. Pui CH, Relling MV, Downing JR(2004). Acute lymphoblastic leukemia. N Engl J Med, 350, 1535-48. https://doi.org/10.1056/NEJMra023001
  38. Raimondi SC, Pui CH, Hancock ML, et al (1996). Heterogeneity of hyperdiploid (51-67) childhood acute lymphoblastic leukemia. Leukemia, 10, 213-24.
  39. Romana SP, Le Coniat M, Berger R (1994). t(12;21): A new recurrent translocation in acute lymphoblastic leukemia. Genes Chromosomes Cancer, 9, 186-91. https://doi.org/10.1002/gcc.2870090307
  40. Sabir N, Iqbal Z, Aleem A, Awan T, et al (2012). Prognostically significant fusion oncogenes in pakistani patients with adult acute lymphoblastic leukemia and their association with disease biology and outcome. Asian Pac J Cancer Prev, 13, 3349-55. https://doi.org/10.7314/APJCP.2012.13.7.3349
  41. Secker-Walker LM, Prentice HG, Durrant J, et al (1997). MRC adult leukemia working party: cytogenetics adds independent prognostic information in adults with acute lymphoblastic leukemia on MRC trial UKALL XA. Br J Haematol, 96, 601-10. https://doi.org/10.1046/j.1365-2141.1997.d01-2053.x
  42. Salem DA, Abd El-Aziz SM (2012). Flowcytometric immunophenotypic profile of acute leukemia: mansoure experience. Indian J Hematol Blood Transfus, 28, 89-96. https://doi.org/10.1007/s12288-011-0110-2
  43. Shaikh MS, Ali SS, Khurshid M, Fadoo Z (2014). Chromosomal abnormalities in Pakistani children with acute lymphoblastic leukemia. Asian Pac J Cancer Prev, 15, 3907-09. https://doi.org/10.7314/APJCP.2014.15.9.3907
  44. Simons A, Stevens-Kroef M, Idrissi-Zaynoun, NE, et al (2011). Microarray-based genomic profiling as a diagnostic tool in acute lymphoblastic leukemia. Genes Chromosome Cancer, 50, 969-81. https://doi.org/10.1002/gcc.20919
  45. Spathas DH, Stewart J, Singer IO, et al (1999). Detection of t(12;21) in childhood acute lymphoblastic leukemia by fluorescence in situ hybridization. Cancer Genet Cytogenet, 110, 7-13 https://doi.org/10.1016/S0165-4608(98)00180-0
  46. Stegmaier K, Pendse S, Barker GF, et al (1995). Frequent loss of heterozygosityat the TEL gene locus in acute lymphoblastic leukemia of childhood. Blood, 86, 38-44.
  47. Thelander EF, Ichimura K, Corcoran M, et al (2008). Characterization of 6q deletions in mature B cell lymphomas and childhood acute lymphoblastic leukemia. Leuk Lymphoma, 49, 477-87. https://doi.org/10.1080/10428190701817282
  48. Woo HY, Kim DW, Park H, et al (2005). Molecular cytogenetic analysis of gene rearrangements in childhood pediatric acute lymphoblastic leukemia. J Korean Med Sci, 20, 36-41. https://doi.org/10.3346/jkms.2005.20.1.36
  49. Zafar Iqbal (2014). Molecular genetic studies on 167 pediatric all patients from different areas of pakistan confirm a low frequency of the favorable prognosis fusion oncogene TELAML1 t (12; 21) in underdeveloped countries of the region. Asian Pac J Cancer Prev, 15, 3541-46. https://doi.org/10.7314/APJCP.2014.15.8.3541
  50. Zakaria Z, Md Ahid MF, Ismail A, et al (2012). Chromosomal aberrations in ETV6/RUNX1-positive childhood acute lymphoblastic leukemia using 244K oligonucleotide array comparative genomic hybridization. Mol Cytogenet, 5, 41. https://doi.org/10.1186/1755-8166-5-41

Cited by

  1. Acute Lymphoblastic Leukemia in Adults - an Analysis of 51 Cases from a Tertiary Care Center in Pakistan vol.17, pp.4, 2016, https://doi.org/10.7314/APJCP.2016.17.4.2307
  2. High-resolution single nucleotide polymorphism arrays identified an atypical microdeletion of the Williams-Beuren syndrome interval in a patient presenting with a different phenotype vol.15, pp.5, 2017, https://doi.org/10.3892/mmr.2017.6279