DOI QR코드

DOI QR Code

Caveolin-1 in Breast Cancer: Single Molecule Regulation of Multiple Key Signaling Pathways

  • Anwar, Sumadi Lukman (Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada) ;
  • Wahyono, Artanto (Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada) ;
  • Aryandono, Teguh (Department of Surgery, Faculty of Medicine, Universitas Gadjah Mada) ;
  • Haryono, Samuel J (Mochtar Riady Comprehensive Cancer Center(MRCCC) Siloam Hospital Semanggi)
  • Published : 2015.11.04

Abstract

Caveolin-1 is a 22-kD trans-membrane protein enriched in particular plasma membrane invaginations known as caveolae. Cav-1 expression is often dysregulated in human breast cancers, being commonly upregulated in cancer cells and downregulated in stromal cells. As an intracellular scaffolding protein, Cav-1, is involved in several vital biological regulations including endocytosis, transcytosis, vesicular transport, and signaling pathways. Several pathways are modulated by Cav-1 including estrogen receptor, EGFR, Her2/neu, $TGF{\beta}$, and mTOR and represent as major drivers in mammary carcinogenesis. Expression and role of Cav-1 in breast carcinogenesis is highly variable depending on the stage of tumor development as well as context of the cell. However, recent data have shown that downregulation of Cav-1 expression in stromal breast tumors is associated with frequent relapse, resistance to therapy, and poor outcome. Modification of Cav-1 expression for translational cancer therapy is particularly challenging since numerous signaling pathways might be affected. This review focuses on present understanding of Cav-1 in breast carcinogenesis and its potential role as a new biomarker for predicting therapeutic response and prognosis as well as new target for therapeutic manipulation.

Keywords

Caveolin-1;breast cancer;signaling pathway;autophagy;prognosis;therapy

References

  1. Agelaki S, Spiliotaki M, Markomanolaki H, et al (2009). Caveolin-1 regulates EGFR signaling in MCF-7 breast cancer cells and enhances gefitinib-induced tumor cell inhibition. Cancer Biol Ther, 8, 1470-7. https://doi.org/10.4161/cbt.8.15.8939
  2. Bhowmick NA, Neilson EG, Moses HL (2004). Stromal fibroblasts in cancer initiation and progression. Nature, 432, 332-7. https://doi.org/10.1038/nature03096
  3. Bonuccelli G, Whitaker-Menezes D, Castello-Cros R, et al 2010. The reverse Warburg effect: Glycolysis inhibitors prevent the tumor promoting effects of caveolin-1 deficient cancer associated fibroblasts. Cell Cycle, 9, 1960-71. https://doi.org/10.4161/cc.9.10.11601
  4. Bucci M, Gratton JP, Rudic RD, et al (2000). In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med, 6, 1362-7. https://doi.org/10.1038/82176
  5. Burke P, Schooler K, Wiley HS (2001). Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol Biol Cell, 12, 1897-1910. https://doi.org/10.1091/mbc.12.6.1897
  6. Cai C, Chen J (2004). Overexpression of caveolin-1 induces alteration of multidrug resistance in Hs578T breast adenocarcinoma cells. Int J Cancer, 111, 522-9. https://doi.org/10.1002/ijc.20300
  7. Carroll JS, Meyer CA, Song J, et al (2006). Genome-wide analysis of estrogen receptor binding sites. Nat Genet, 38, 1289-97. https://doi.org/10.1038/ng1901
  8. Castello-Cros R, Bonuccelli G, Molchansky A, et al (2011). Matrix remodeling stimulates stromal autophagy, "fueling" cancer cell mitochondrial metabolism and metastasis. Cell Cycle, 10, 2021-34. https://doi.org/10.4161/cc.10.12.16002
  9. Cirri P, Chiarugi P (2011). Cancer associated fibroblasts : the dark side of the coin. Am J Cancer Res, 1, 482-97.
  10. Clemons M, Goss P (2001). Estrogen and the risk of breast cancer. NEJM, 344, 276-285. https://doi.org/10.1056/NEJM200101253440407
  11. Cohen AW, Razani B, Wang XB, et al (2003). Caveolin-1- deficient mice show insulin resistance and defective insulin receptor protein expression in adipose tissue. Am J Physiol Cell Physiol, 285, C222-5. https://doi.org/10.1152/ajpcell.00006.2003
  12. Dong X, Mao S, Wen H (2013). Upregulation of proinflammatory genes in skin lesions may be the cause of keloid formation (Review). Biomed Rep, 1, 833-6.
  13. El-Gendi SM, Mostafa MF, El-Gendi AM, et al (2012). Stromal caveolin-1 expression in breast carcinoma. Correlation with early tumor recurrence and clinical outcome. Pathol Oncol Res, 18, 459-69. https://doi.org/10.1007/s12253-011-9469-5
  14. Elsheikh SE, Green AR, Rakha EA, et al (2008). Caveolin 1 and Caveolin 2 are associated with breast cancer basal-like and triple-negative immunophenotype. Br J Cancer, 99, 327-34. https://doi.org/10.1038/sj.bjc.6604463
  15. Van den Eynden GG, Van Laere SJ, Van der Auwera I, et al (2006).Overexpression of caveolin-1 and -2 in cell lines and in human samples of inflammatory breast cancer. Breast Cancer Res Treat, 95, 219-28. https://doi.org/10.1007/s10549-005-9002-1
  16. Fielding PE, Chau P, Liu D, Spencer TA, Fielding CJ, (2004). Mechanism of platelet-derived growth factor-dependent caveolin-1 phosphorylation: relationship to sterol binding and the role of serine-80. Biochemistry, 43, 2578-86. https://doi.org/10.1021/bi035442c
  17. Finn RS, Dering J, Ginther C (2007). Dasatinib, an orally active small molecule inhibitor of both the src and abl kinases, selectively inhibits growth of basal-type/"triple-negative" breast cancer cell lines growing in vitro. Breast Cancer Res Treat, 105, 319-26. https://doi.org/10.1007/s10549-006-9463-x
  18. Finn RS, Aleshin A, Dering J, et al (2013). Molecular subtype and response to dasatinib, an Src/Abl small molecule kinase inhibitor, in hepatocellular carcinoma cell lines in vitro. Hepatology, 57, 1838-46. https://doi.org/10.1002/hep.26223
  19. Fiucci G, Ravid D, Reich R, Liscovitch M, et al (2002). Caveolin-1 inhibits anchorage-independent growth anoikis and invasiveness in MFC-7 human breast cancer cells. Oncogene, 21, 2365-2375. https://doi.org/10.1038/sj.onc.1205300
  20. Fujita Y, Maruyama S, Kogo H, Matsuo S, Fujimoto T (2004). Caveolin-1 in mesangial cells suppresses MAP kinase activation and cell proliferation induced by bFGF and PDGF. Kidney Int, 66, 1794-04. https://doi.org/10.1111/j.1523-1755.2004.00954.x
  21. Giusiano S, Cochet C, Filhol O, et al (2011). Protein kinase $CK2{\alpha}$ subunit over-expression correlates with metastatic risk in breast carcinomas: Quantitative immunohistochemistry in tissue microarrays. Eur J Cancer, 47, 792-801. https://doi.org/10.1016/j.ejca.2010.11.028
  22. Glait C, Ravid D, Lee SW, Liscovitch M, Werner H (2006). Caveolin-1 controls BRCA1 gene expression and cellular localization in human breast cancer cells. FEBS Lett, 580, 5268-74. https://doi.org/10.1016/j.febslet.2006.08.071
  23. Goetz JG, Minguet S, Navarro-Lerida I, et al (2011). Biomechanical remodeling of the microenvironment by stromal caveolin-1 favors tumor invasion and metastasis. Cell, 146, 148-63. https://doi.org/10.1016/j.cell.2011.05.040
  24. Gupta R, Toufaily C, Annabi B (2014). Caveolin and cavin family members: dual roles in cancer. Biochimie, 107, 188-202. https://doi.org/10.1016/j.biochi.2014.09.010
  25. Hayashi K, Matsuda S, Machida K, et al (2001). Invasion activating caveolin-1 mutation in human scirrhous breast cancers. Cancer Res, 61, 2361-64.
  26. Hino M, Doihara H, Kobayashi K, Aoe M, Shimizu N (2003). Caveolin-1 as tumor suppressor gene in breast cancer. Surg Today, 33, 486-90.
  27. Jezierska-Drutel A, Rosenzweig SA, Neumann CA, et al (2013). Role of oxidative stress and the microenvironment in breast cancer development and progression. Adv Cancer Res, 119, 107-25. https://doi.org/10.1016/B978-0-12-407190-2.00003-4
  28. Joglekar M, Elbazanti WO, Weitzman MD, Lehma H, van Golen KL (2015). Caveolin-1 mediates inflamatory breast cancer cell invasion via the Akt1 pathway and RhoC GTPase. J Cell Biochem, 116, 923-33. https://doi.org/10.1002/jcb.25025
  29. Kiss AL (2012). Caveolae and the regulation of endocytosis. Adv Exp Med Biol, 729, 14-28. https://doi.org/10.1007/978-1-4614-1222-9_2
  30. Koo JS, Park S, Kim SI, Lee S, Park BW (2011). The impact of caveolin protein expression in tumor stroma on prognosis of breast cancer. Tumour Biol, 32, 787-99. https://doi.org/10.1007/s13277-011-0181-6
  31. Lajoie P, Nabi IR (2010). Lipid rafts, caveolae, and their endocytosis. Int Rev Cell Mol Biol, 282, 135-63. https://doi.org/10.1016/S1937-6448(10)82003-9
  32. Lavie Y, Fiucci G, Liscovitch M (2001). Upregulation of caveolin in multidrug resistant cancer cells: functional implications. Adv Drug Deliv Rev, 49, 317-23. https://doi.org/10.1016/S0169-409X(01)00144-2
  33. Lee H, Park DS, Razani B, et al (2002). Caveolin-1 mutations (P132L and null) and the pathogenesis of breast cancer: caveolin-1 (P132L) behaves in a dominant-negative manner and caveolin-1 (-/-) null mice show mammary epithelial cell hyperplasia. Am J Pathol, 161, 1357-69. https://doi.org/10.1016/S0002-9440(10)64412-4
  34. Lee SW, Reimer CL, Oh P, Campbell DB, Schnitzer JE, (1998). Tumor cell growth inhibition by caveolin re-expression in human breast cancer cells. Oncogene, 16, 1391-97. https://doi.org/10.1038/sj.onc.1201661
  35. Ma X, Liu L, Nie W, et al (2013). Prognostic role of caveolin in breast cancer: a meta-analysis. Breast, 22, 462-9. https://doi.org/10.1016/j.breast.2013.03.005
  36. Maldonado-Báez L, Williamson C, Donaldson JG (2013). Clathrin-independent endocytosis: A cargo-centric view. Exp Cell Res, 319, 2759-69. https://doi.org/10.1016/j.yexcr.2013.08.008
  37. Martinez-Outschoorn U, Sotgia F, Lisanti MP (2014). Tumor microenvironment and metabolic synergy in breast cancers: Critical importance of mitochondrial fuels and function. Semin Oncol, 41, 195-216. https://doi.org/10.1053/j.seminoncol.2014.03.002
  38. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker- Menezes D, et al (2010). Autophagy in cancer associated fibroblasts promotes tumor cell survival: Role of hypoxia, HIF1 induction and NF${kappa}B$ activation in the tumor stromal microenvironment. Cell Cycle, 9, 3515-33. https://doi.org/10.4161/cc.9.17.12928
  39. Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2011). Cytokine production and inflammation drive autophagy in the tumor microenvironment: Role of stromal caveolin-1 as a key regulator. Cell Cycle, 10, 1784-93. https://doi.org/10.4161/cc.10.11.15674
  40. Martinez-Outschoorn UE, Whitaker-Menezes D, Lin Z, et al (2010). Tumor cells induce the cancer associated fibroblast phenotype via caveolin-1 degradation: Implications for breast cancer and DCIS therapy with autophagy inhibitors. Cell Cycle, 9, 2423-33. https://doi.org/10.4161/cc.9.12.12048
  41. Martinez-Outschoorn UE, Sotgia F, Lisanti MP, (2015). Caveolae and signalling in cancer. Nat Rev Cancer, 15, 225-37. https://doi.org/10.1038/nrc3915
  42. Mercier I, Camacho J, Titchen K, et al (2012). Caveolin-1 and accelerated host aging in the breast tumor microenvironment: Chemoprevention with rapamycin, an mTOR inhibitor and anti-aging drug. Am J Pathol, 181, 278-93. https://doi.org/10.1016/j.ajpath.2012.03.017
  43. Mercier I, Casimiro MC, Wang C, et al (2008). Human breast cancer-associated fibroblasts (CAFs) show caveolin-1 downregulation and RB tumor suppressor functional inactivation: Implications for the response to hormonal therapy. Cancer Biol Ther, 7, 1212-25. https://doi.org/10.4161/cbt.7.8.6220
  44. Mercier I, Lisanti M (2012). Caveolin-1 and breast cancer: a new clinical perspective. Adv Exp Med Biol, 729, 83-94. https://doi.org/10.1007/978-1-4614-1222-9_6
  45. Mercier I, Lisanti MP (2012). Caveolin-1 and breast cancer: a new clinical perspective. caveolins and caveolae: roles in signaling and disease mechanisms. Adv Exp Med Biol, 729, 83-94. https://doi.org/10.1007/978-1-4614-1222-9_6
  46. Mineo C, Gill GN, Anderson RGW, (1999). Regulated migration of epidermal growth factor receptor from caveolae. J Biol Chem, 274, 30636-43. https://doi.org/10.1074/jbc.274.43.30636
  47. Orom UA, Lim MK, Savage JE, et al (2012). MicroRNA-203 regulates caveolin-1 in breast tissue during caloric restriction. Cell Cycle, 11, 1291-5. https://doi.org/10.4161/cc.19704
  48. Otranto M, Sarrazy V, Bonte F, et al (2012). The role of the myofibroblast in tumor stroma remodeling. Cell Adh Mig, 6, 203-19. https://doi.org/10.4161/cam.20377
  49. Park DS, Lee H, Frank PG, et al (2002). Caveolin-1-deficient mice show accelerated mammary gland development during pregnancy, premature lactation, and hyperactivation of the Jak-2/STAT5a signaling cascade. Mol Biol Cell, 13, 3416-30. https://doi.org/10.1091/mbc.02-05-0071
  50. Park JH, Han HJ (2009). Caveolin-1 plays important role in EGFinduced migration and proliferation of mouse embryonic stem cells: involvement of PI3K/Akt and ERK. Am J Physiol Cell Physiol, 297, 935-44. https://doi.org/10.1152/ajpcell.00121.2009
  51. Park JH, Lee MY, Han HJ, et al (2009). A potential role for caveolin-1 in estradiol-17beta-induced proliferation of mouse embryonic stem cells: involvement of Src, PI3K/Akt, and MAPKs pathways. Int J Biochem Cell Biol, 41, 659-65. https://doi.org/10.1016/j.biocel.2008.07.010
  52. Park SS, Kim JE, Kim YA, Kim YC, Kim SW (2005). Caveolin-1 is down-regulated and inversely correlated with HER2 and EGFR expression status in invasive ductal carcinoma of the breast. Histopathology, 47, 625-30. https://doi.org/10.1111/j.1365-2559.2005.02303.x
  53. Park WY, Park JS, Cho KA, et al (2000). Up-regulation of caveolin attenuates epidermal growth factor signaling in senescent cells. J Biol Chem, 275, 20847-52. https://doi.org/10.1074/jbc.M908162199
  54. Patani N, Lambros MB, Natrajan R, et al (2012). Non-existence of caveolin-1 gene mutations in human breast cancer. Breast Cancer Res Treat, 131, 307-10. https://doi.org/10.1007/s10549-011-1761-2
  55. Patani N, Martin LA, Reis-Filho JS, Dowsett M, (2012). The role of caveolin-1 in human breast cancer. Breast Cancer Res Treat, 131, 1-15. https://doi.org/10.1007/s10549-011-1751-4
  56. Pavlides S, Tsirigos A, Migneco G, et al (2010). The autophagic tumor stroma model of cancer: Role of oxidative stress and ketone production in fueling tumor cell metabolism. Cell Cycle, 9, 3485-505. https://doi.org/10.4161/cc.9.17.12721
  57. White BP, Molloy MP, Zhao H, et al (2013). Extranuclear ERalpha is associated with regression of T47D PKCalphaoverexpressing, tamoxifen-resistant breast cancer. Mol Cancer, 12, 34. https://doi.org/10.1186/1476-4598-12-34
  58. Perrone G, Altomare V, Zagami M, et al (2009). Caveolin-1 expression in human breast lobular cancer progression. Mod Pathol, 22, 71-8. https://doi.org/10.1038/modpathol.2008.154
  59. Qian N, Ueno T, Kawaguchi-Sakita N, et al (2011). Prognostic significance of tumor/stromal caveolin-1 expression in breast cancer patients. Cancer Sci, 102, 1590-6. https://doi.org/10.1111/j.1349-7006.2011.01985.x
  60. Rao X, Evans J, Chae H, et al (2012). CpG island shore methylation regulates caveolin-1 expression in breast cancer. Oncogene, 32, 4519-28
  61. Ren M, Liu F, Zhu Y, et al (2014). Absence of caveolin-1 expression in carcinoma associated fibroblast of invasive micropapollary carcinoma of the breast predicts poor patient outcome. Virchows Arch, 465, 291-8. https://doi.org/10.1007/s00428-014-1614-6
  62. Pinilla SM, Honrado E, Hardisson D, Benítez J, Palacios J, (2006). Caveolin-1 expression is associated with a basal-like phenotype in sporadic and hereditary breast cancer. Breast Cancer Res Treat, 99, 85-90. https://doi.org/10.1007/s10549-006-9184-1
  63. Sagara Y, Mimori K, Yoshinaga K, et al (2004). Clinical significance of Caveolin-1, Caveolin-2 and HER2/neu mRNA expression in human breast cancer. Br J Cancer, 91, 959-65.
  64. Savage K, Lambros MB, Robertson D, et al (2007). Caveolin 1 is overexpressed and amplified in a subset of basallike and metaplastic breast carcinomas: A morphologic, ultrastructural, immunohistochemical, and in situ hybridization analysis. Clin Cancer Res, 13, 90-101. https://doi.org/10.1158/1078-0432.CCR-06-1371
  65. Schlegel A, Wang C, Katzenellenbogen BS, Pestell RG, Lisanti MP, (1999). Caveolin-1 potentiates estrogen receptor ${\alpha}$ (ER ${\alpha}$) signaling. Caveolin-1 drives ligand-independent nuclear translocation and activation of ER ${\aopha}$. J Biol Chem, 274, 33551-6. https://doi.org/10.1074/jbc.274.47.33551
  66. Schlegel A, Wang C, Pestell RG, Lisanti MP, (2001). Ligandindependent activation of oestrogen receptor alpha by caveolin-1. Bioch J, 359, 203-10. https://doi.org/10.1042/bj3590203
  67. Sekhar SC, Kasai T, Satoh A, et al (2013). Identification of caveolin-1 as a potential causative factor in the generation of trastuzumab resistance in breast cancer cells. J Cancer, 4, 391-401. https://doi.org/10.7150/jca.6470
  68. Senetta R, Stella G, Pozzi E, et al (2013). Caveolin-1 as a promoter of tumour spreading: When, how, where and why. J Cell Mol Med, 17, 325-36. https://doi.org/10.1111/jcmm.12030
  69. Shajahan AN, Dobbin ZC, Hickman FE, Dakshanamurthy S, Clarke R, (2012). Tyrosine-phosphorylated caveolin-1 (Tyr- 14) increases sensitivity to paclitaxel by inhibiting BCL2 and BCLxL proteins via c-Jun N-terminal Kinase (JNK). J Biol Chem, 287, 17682-92. https://doi.org/10.1074/jbc.M111.304022
  70. Siegel R, Ma J, Zou Z, Jemal A, (2014). Cancer statistics, 2014. CA Cancer J Clin, 64, 9-29. https://doi.org/10.3322/caac.21208
  71. Simpkins SA, Hanby AM, Holliday DL, Speirs V, (2012). Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol, 227, 490-8. https://doi.org/10.1002/path.4034
  72. Sloan EK, Ciocca DR, Pouliot N, et al (2009). Stromal cell expression of caveolin-1 predicts outcome in breast cancer. Am J Pathol, 174, 2035-43. https://doi.org/10.2353/ajpath.2009.080924
  73. Sloan EK, Stanley KL, Anderson RL, (2004). Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene, 23, 7893-7. https://doi.org/10.1038/sj.onc.1208062
  74. Sotgia F (2012). Caveolin-1 and Cancer Metabolism in the Tumor Microenvironment: Markers, Models, and Mechanisms. Annual Review of Pathology: Mechanisms of Disease, 7, 423-467. https://doi.org/10.1146/annurev-pathol-011811-120856
  75. Sotgia F, Martinez-Outschoorn UE, Howell A, et al (2006). Caveolin-1, mammary stem cells, and estrogen-dependent breast cancers. Cancer Res, 66, 10647-51. https://doi.org/10.1158/0008-5472.CAN-06-2805
  76. Sotgia F, Martinez-Outschoorn UE, Pavlides S, et al (2011). Understanding the Warburg effect and the prognostic value of stromal caveolin-1 as a marker of a lethal tumor microenvironment. Br Cancer Res, 13, 213. https://doi.org/10.1186/bcr2892
  77. Syeed N, Husain SA, Abdullah S, et al (2010). Caveolin-1 promotes mammary tumorigenesis: Mutational profile of the Kashmiri population. Asian Pac J Cancer Prev, 11, 689-96.
  78. Syeed N, Husain SA, Abdullah S, et al (2010). Mutational profile of the CAV-1 gene in breast cancer cases in the ethnic Kashmiri population. Asian Pac J Cancer Prev, 11, 1099-105.
  79. Tagawa A, Mezzacasa A, Hayer A, et al (2005). Assembly and trafficking of caveolar domains in the cell: Caveolae as stable, cargo-triggered, vesicular transporters. J Cell Biol, 170, 769-79. https://doi.org/10.1083/jcb.200506103
  80. Thomas NB, Hutcheson IR, Campbell L, et al (2010). Growth of hormone-dependent MCF-7 breast cancer cells is promoted by constitutive caveolin-1 whose expression is lost in an EGF-R-mediated manner during development of tamoxifen resistance. Breast Cancer Res Treat, 119, 575-91. https://doi.org/10.1007/s10549-009-0355-8
  81. Tian F, Wu H, Li Z, et al (2009). Activated PKCalpha/ERK1/2 signaling inhibits tamoxifen-induced apoptosis in C6 cells. Cancer Invest, 27, 802-8. https://doi.org/10.1080/07357900802672720
  82. Trimmer C, Sotgia F, Whitaker-Menezes D, et al (2011). Caveolin-1 and mitochondrial SOD2 (MnSOD) function as tumor suppressors in the stromal microenvironment: A new genetically tractable model for human cancer associated fibroblasts. Cancer Biol Ther, 11, 383-94. https://doi.org/10.4161/cbt.11.4.14101
  83. Tryfonopoulos D, Walsh S, Collins DM, et al (2011). Src: a potential target for the treatment of triple-negative breast cancer. Ann Oncol, 22, 2234-40. https://doi.org/10.1093/annonc/mdq757
  84. Wang XX, Wu Z, Huang HF, et al (2013). Caveolin-1, through its ability to negatively regulate TLR4, is a crucial determinant of MAPK activation in LPS-challenged mammary epithelial cells. Asian Pac J Cancer Prev, 14, 2295-9. https://doi.org/10.7314/APJCP.2013.14.4.2295
  85. Wang Y, Yu J, Zhan Q (2008). BRCA1 regulates caveolin-1 expression and inhibits cell invasiveness. Biochem Biophys Res Commun, 370, 201-6. https://doi.org/10.1016/j.bbrc.2008.03.031
  86. Wang Z, Wang N, Li W, et al (2014). Caveolin-1 mediates chemoresistance in breast cancer stem cells via ${\beta}$-catenin/ ABCG2 signaling pathway. Carcinogenesis, 35, 2346-56. https://doi.org/10.1093/carcin/bgu155
  87. Weigelt B, Geyer FC, Natrajan R, et al (2010). The molecular underpinning of lobular histological growth pattern: A genome-wide transcriptomic analysis of invasive lobular carcinomas and grade- and molecular subtype-matched invasive ductal carcinomas of no special type. J Pathol, 220, 45-57. https://doi.org/10.1002/path.2629
  88. Williams TM, Medina F, Badano I, et al (2004). Caveolin-1 gene disruption promotes mammary tumorigenesis and dramatically enhances lung metastasis in vivo: Role of Cav-1 in cell invasiveness and matrix metalloproteinase (MMP-2/9) secretion. J Biol Chem, 279, 51630-46. https://doi.org/10.1074/jbc.M409214200
  89. Williams TM, Lee H, Cheung MW, et al (2004). Combined loss of INK4a and caveolin-1 synergistically enhances cell proliferation and oncogene-induced tumorigenesis. Role of INK4a/CAV-1 in mammary epithelial cell hyperplasia. J Bioll Chem, 279, 24745-56. https://doi.org/10.1074/jbc.M402064200
  90. Williams TM, Lisanti MP, (2005). Caveolin-1 in oncogenic transformation, cancer, and metastasis. Am J Physiol Cell Physiol, 288, 494-506.
  91. Williams TM, Lisanti MP, (2004). The caveolin proteins. Genome Biol, 5, 214. https://doi.org/10.1186/gb-2004-5-3-214
  92. Witkiewicz AK, Dasgupta A, Sotgia F, et al (2009). An absence of stromal caveolin-1 expression predicts early tumor recurrence and poor clinical outcome in human breast cancers. Am J Pathol, 174, 2023-34. https://doi.org/10.2353/ajpath.2009.080873
  93. Witkiewicz AK, Kline J, Queenan M, et al (2011). Molecular profiling of a lethal tumor microenvironment, as defined by stromal caveolin-1 status in breast cancers. Cell Cycle, 10, 1794-1809. https://doi.org/10.4161/cc.10.11.15675
  94. Witkiewicz AK, Dasgupta A, Nguyen K, et al (2009). Stromal caveolin-1 levels predict early DCIS progression to invasive breast cancer. Cancer Biol Ther, 8, 1071-9. https://doi.org/10.4161/cbt.8.11.8874
  95. Wu P, Qi B, Zhu H, et al (2007). Suppression of staurosporinemediated apoptosis in Hs578T breast cells through inhibition of neutral-sphingomyelinase by caveolin-1. Cancer Lett, 256, 64-72. https://doi.org/10.1016/j.canlet.2007.05.007
  96. Zagouri F, Sergentanis TN, Chrysikos D, Filipits M, Bartsch R, (2012). mTOR inhibitors in breast cancer: A systematic review. Gynecol Oncol, 127, 662-72. https://doi.org/10.1016/j.ygyno.2012.08.040
  97. Zhang EY, Cristofanilli M, Robertson F, et al (2013). Genome wide proteomics of ERBB2 and EGFR and other oncogenic pathways in inflammatory breast cancer. J Proteome Res, 12, 2805-17. https://doi.org/10.1021/pr4001527
  98. Zou W, McDaneld L, Smith LM, (2003). Caveolin-1 haploinsufficiency leads to partial transformation of human breast epithelial cells. AntiCancer Res, 23, 4581-6.

Cited by

  1. Expression of KCNA5 Protein in Human Mammary Epithelial Cell Line Associated with Caveolin-1 vol.249, pp.4, 2016, https://doi.org/10.1007/s00232-016-9885-2
  2. p53 as a Regulator of Lipid Metabolism in Cancer vol.17, pp.12, 2016, https://doi.org/10.3390/ijms17122074
  3. gene silencing promotes tau protein phosphorylation, inhibits cell proliferation, and induces apoptosis in human neuroblastoma SH-SY5Y cells vol.32, pp.12, 2018, https://doi.org/10.1096/fj.201701386
  4. Expression and clinical significance of Caveolin-1 in prostate Cancer after transurethral surgery vol.18, pp.1, 2018, https://doi.org/10.1186/s12894-018-0418-4