DOI QR코드

DOI QR Code

Dynamical behaviour of electrically actuated microcantilevers

  • Farokhi, Hamed (Department of Mechanical Engineering, McGill University) ;
  • Ghayesh, Mergen H. (School of Mechanical, Materials and Mechatronic Engineering, University of Wollongong)
  • Received : 2014.09.06
  • Accepted : 2015.08.18
  • Published : 2015.09.25

Abstract

The current paper aims at investigating the nonlinear dynamical behaviour of an electrically actuated microcantilever. The microcantilever is excited by a combination of AC and DC voltages. The nonlinear equation of motion of the microcantilever is obtained by means of force and moment balances. A high-dimensional Galerkin scheme is then applied to reduce the equation of motion to a discrete model. A numerical technique, based on the pseudo-arclength continuation method, is used to solve the discretized model. The electrostatic deflection of the microcantilever and static pull-in instabilities, due to the DC voltage, are analyzed by plotting the so-called DC voltage-deflection curves. At the simultaneous presence of the DC and AC voltages, the nonlinear dynamical behaviour of the microcantilever is analyzed by plotting frequency-response and force-response curves.

References

  1. Abdel-Rahman, E.M. and Nayfeh, A.H. (2003), "Secondary resonances of electrically actuated resonant microsensors", J. Micromech. Microeng., 13(3), 491-501. https://doi.org/10.1088/0960-1317/13/3/320
  2. Alsaleem, F.M., Younis, M.I. and Ouakad, H.M. (2009), "On the nonlinear resonances and dynamic pull-in of electrostatically actuated resonators", J. Micromech. Microeng., 19(4), 045013. https://doi.org/10.1088/0960-1317/19/4/045013
  3. Ansari, R., Faghih Shojaei, M., Gholami, R., Mohammadi, V. and Darabi, M. (2012), "Thermal postbuckling behavior of size-dependent functionally graded timoshenko microbeams", Int. J. Nonlinear Mech., 50, 127-135.
  4. Ansari, R., Faghih Shojaei, M., Mohammadi, V., Gholami, R. and Darabi, M.A. (2013), "Buckling and postbuckling behavior of functionally graded Timoshenko microbeams based on the strain gradient theory", J. Mech. Mater. Struct., 7(10), 931-949. https://doi.org/10.2140/jomms.2012.7.931
  5. Baghani, M. (2012), "Analytical study on size-dependent static pull-in voltage of microcantilevers using the modified couple stress theory", Int. J. Eng. Sci., 54, 99-105. https://doi.org/10.1016/j.ijengsci.2012.01.001
  6. Bao, M., Yang, H., Yin, H. and Shen, S. (2000), "Effects of electrostatic forces generated by the driving signal on capacitive sensing devices", Sensor. Actuat. - A, 84(3), 213-219. https://doi.org/10.1016/S0924-4247(00)00312-5
  7. Farokhi, H., Ghayesh, M. and Amabili, M. (2013), "Nonlinear resonant behavior of microbeams over the buckled state", Appl. Phys. A, 1-11.
  8. Farokhi, H., Ghayesh, M.H. and Amabili, M. (2013), "Nonlinear dynamics of a geometrically imperfect microbeam based on the modified couple stress theory", Int. J. Eng. Sci., 68, 11-23. https://doi.org/10.1016/j.ijengsci.2013.03.001
  9. Ghayesh, M. (2012a), "Stability and bifurcations of an axially moving beam with an intermediate spring support", Nonlinear Dyn., 69(1-2), 193-210. https://doi.org/10.1007/s11071-011-0257-2
  10. Ghayesh, M. (2012b), "Subharmonic dynamics of an axially accelerating beam", Arch. Appl. Mech., 82(9), 1169-1181. https://doi.org/10.1007/s00419-012-0609-5
  11. Ghayesh, M., Farokhi, H. and Amabili, M. (2013), "Coupled nonlinear size-dependent behaviour of microbeams", Appl. Phys. A, 112(2), 329-338. https://doi.org/10.1007/s00339-013-7787-z
  12. Ghayesh, M.H. and Amabili, M. (2014), "Coupled longitudinal-transverse behaviour of a geometrically imperfect microbeam", Compos. Part B: Eng., 60, 371-377. https://doi.org/10.1016/j.compositesb.2013.12.030
  13. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013a), "Nonlinear forced vibrations of a microbeam based on the strain gradient elasticity theory", Int. J. Eng. Sci., 63(0), 52-60. https://doi.org/10.1016/j.ijengsci.2012.12.001
  14. Ghayesh, M.H., Amabili, M. and Farokhi, H. (2013b), "Three-dimensional nonlinear size-dependent behaviour of Timoshenko microbeams", Int. J. Eng. Sci., 71, 1-14. https://doi.org/10.1016/j.ijengsci.2013.04.003
  15. Ghayesh, M.H., Farokhi, H. and Amabili, M. (2013c), "Nonlinear behaviour of electrically actuated MEMS resonators", Int. J. Eng. Sci., 71, 137-155. https://doi.org/10.1016/j.ijengsci.2013.05.006
  16. Ghayesh, M.H., Kazemirad, S. and Amabili, M. (2012), "Coupled longitudinal-transverse dynamics of an axially moving beam with an internal resonance", Mech. Mach. Theory, 52, 18-34. https://doi.org/10.1016/j.mechmachtheory.2012.01.008
  17. Ghayesh, M.H., Kazemirad, S. and Darabi, M.A. (2011), "A general solution procedure for vibrations of systems with cubic nonlinearities and nonlinear/time-dependent internal boundary conditions", J. Sound Vib., 330(22), 5382-5400. https://doi.org/10.1016/j.jsv.2011.06.001
  18. Ghayesh, M.H., Kazemirad, S. and Reid, T. (2012), "Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: A general solution procedure", Appl. Math. Model., 36(7), 3299-3311. https://doi.org/10.1016/j.apm.2011.09.084
  19. Hu, Y.J., Yang, J. and Kitipornchai, S. (2010), "Pull-in analysis of electrostatically actuated curved micro-beams with large deformation", Smart Mater. Struct., 19(6), 065030. https://doi.org/10.1088/0964-1726/19/6/065030
  20. Ibrahimbegovic, A. and Al Mikdad, M. (2000), "Quadratically convergent direct calculation of critical points for 3d structures undergoing finite rotations", Comput. Method. Appl. M., 189(1), 107-120. https://doi.org/10.1016/S0045-7825(99)00291-1
  21. Ibrahimbegovic, A., Hajdo, E. and Dolarevic, S. (2013), "Linear instability or buckling problems for mechanical and coupled thermomechanical extreme conditions", Coupled Syst. Mech., 2(4), 349-374 https://doi.org/10.12989/csm.2013.2.4.349
  22. Jia, X.L., Yang, J., Kitipornchai, S. and Lim, C.W. (2012), "Resonance frequency response of geometrically nonlinear micro-switches under electrical actuation", J. Sound Vib., 331(14), 3397-3411. https://doi.org/10.1016/j.jsv.2012.02.026
  23. Kim, P., Bae, S. and Seok, J. (2012), "Resonant behaviors of a nonlinear cantilever beam with tip mass subject to an axial force and electrostatic excitation", Int. J. Mech. Sci., 64(1), 232-257. https://doi.org/10.1016/j.ijmecsci.2012.06.008
  24. Ngo, V.M., Ibrahimbegovic, A. and Hajdo, E. (2014), "Nonlinear instability problems including localized plastic failure and large deformations for extreme thermo-mechanical loads", Coupled Syst. Mech., 3(1), 89-110. https://doi.org/10.12989/csm.2014.3.1.089
  25. Pamidighantam, S., Puers, R., Baert, K. and Tilmans, H.A.C. (2002), "Pull-in voltage analysis of electrostatically actuated beam structures with fixed-fixed and fixed-free end conditions", J Micromech. Microeng, 12(4), 458. https://doi.org/10.1088/0960-1317/12/4/319
  26. Saif, M.T.A., Alaca, B.E. and Sehitoglu, H. (1999), "Analytical modeling of electrostatic membrane actuator for micro pumps", J. Microelectromech. Syst., 8(3), 335-345. https://doi.org/10.1109/84.788638
  27. Wang, Y.G., Lin, W.H., Feng, Z.J. and Li, X.M. (2012), "Characterization of extensional multi-layer microbeams in pull-in phenomenon and vibrations", Int. J. Mech. Sci., 54(1), 225-233. https://doi.org/10.1016/j.ijmecsci.2011.10.012
  28. Younis, M.I. (2011), MEMS Linear and Nonlinear Statics and Dynamics, Springer
  29. Younis, M.I., Abdel-Rahman, E.M. and Nayfeh, A. (2003), "A reduced-order model for electrically actuated microbeam-based MEMS", J. Microelectromech. Syst., 12(5), 672-680. https://doi.org/10.1109/JMEMS.2003.818069
  30. Zengerle, R., Richter, A. and Sandmaier, H. (1992), "A micro membrane pump with electrostatic actuation", Micro Electro Mechanical Systems, 1992, MEMS '92, Proceedings. An Investigation of Micro Structures, Sensors, Actuators, Machines and Robot. IEEE, 4-7 Feb 1992.