Embryo Aggregation Promotes Derivation Efficiency of Outgrowths from Porcine Blastocysts

  • Lee, Sang-Goo ;
  • Park, Jin-Kyu ;
  • Choi, Kwang-Hwan ;
  • Son, Hye-Young ;
  • Lee, Chang-Kyu
  • Received : 2015.05.26
  • Accepted : 2015.07.17
  • Published : 2015.11.01


Porcine embryonic stem cells (pESCs) have become an advantageous experimental tool for developing therapeutic applications and producing transgenic animals. However, despite numerous reports of putative pESC lines, deriving validated pESC lines from embryos produced in vitro remains difficult. Here, we report that embryo aggregation was useful for deriving pESCs from in vitro-produced embryos. Blastocysts derived from embryo aggregation formed a larger number of colonies and maintained cell culture stability. Our derived cell lines demonstrated expression of pluripotent markers (alkaline phosphatase, Oct4, Sox2, and Nanog), an ability to form embryoid bodies, and the capacity to differentiate into the three germ layers. A cytogenetic analysis of these cells revealed that all lines derived from aggregated blastocysts had normal female and male karyotypes. These results demonstrate that embryo aggregation could be a useful technique to improve the efficiency of deriving ESCs from in vitro-fertilized pig embryos, studying early development, and deriving pluripotent ESCs in vitro in other mammals.


Embryo Aggregation;Embryonic Stem Cells;In vitro-produced Embryos;Embryo Quality;Derivation Efficiency;Pig


  1. Abeydeera, L. R. and B. N. Day. 1997. Fertilization and subsequent development in vitro of pig oocytes inseminated in a modified tris-buffered medium with frozen-thawed ejaculated spermatozoa. Biol. Reprod. 57:729-734.
  2. Alberio, R., N. Croxall, and C. Allegrucci. 2010. Pig epiblast stem cells depend on activin/nodal signaling for pluripotency and self-renewal. Stem Cells Dev. 19:1627-1636.
  3. Bavister, B. 2004. The role of animal studies in supporting human assisted reproductive technology. Reprod. Fertil. Dev. 16:719-728.
  4. Boediono, A., M. Ooe, M. Yamamoto, M. Takagi, S. Saha, and T. Suzuki. 1993. Production of chimeric calves by aggregation of in vitro fertilized bovine embryos without zonae pellucidae. Theriogenology 40:1221-1230.
  5. Boediono, A., T. Suzuki, L. Y. Li, and R. A. Godke. 1999. Offspring born from chimeras reconstructed from pathenogenetic and in vitro fertilized embryos. Mol. Reprod. Dev. 53:159-170.<159::AID-MRD5>3.0.CO;2-X
  6. Boiani, M., S. Eckardt, N. A. Leu, H. R. Scholer, and K. J. McLaughlin. 2003. Pluripotency deficit in clone overcome clone-clone aggregation : epigenetic complementation? EMBO J. 22:5304-5312.
  7. Chambers, I., D. Colby, M. Robertson, J. Nichols, S. Lee, S. Tweedie, and A. Smith. 2003. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 113:643-655.
  8. Davis, D. L. 1985. Culture and storage of pig embryos. J. Reprod. Fertil. Suppl. 33:115-124.
  9. de la Fuente, R. and W. A. King. 1997. Use of a chemically defined system for the direct comparison of inner cell mass and trophectoderm distribution in murine, porcine and bovine embryos. Zygote 5:309-320.
  10. Emerson, M., A. R. Travis, R. Bathgate, T. Stojanov, D. I. Cook, E. Harding, D. P. Lu, and C. O'Neill. 2000. Characterization and functional significance of calcium transients in the 2-cell mouse embryo induced by an autocrine growth factor. The J. Biol. Chem. 275:21905-21913.
  11. Friel, R., S. v. d. Sar and P. J. Mee. 2005. Embryonic stem cells: Understanding their history, cell biology and signalling. Adv. Drug Deliv. Rev. 57:1894-1903.
  12. Keefer, C. L., D. Pant, L. Blomberg, and N. C. Talbot. 2007. Challenges and prospects for the establishment of embryonic stem cell lines of domesticated ungulates. Anim. Reprod. Sci. 98:147-168.
  13. Kim, H. S., G. S. Lee, S. H. Hyun, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2004. Improved in vitro development of porcine embryos with different energy substrates and serum. Theriogenology 61:1381-1393.
  14. Kim, S., J. H. Kim, E. Lee, Y. W. Jeong, M. S. Hossein, S. M. Park, S. W. Park, J. Y. Lee, Y. I. Jeong, H. S. Kim, Y. W. Kim, S. H. Hyun and W. S. Hwang. 2010. Establishment and characterization of embryonic stem-like cells from porcine somatic cell nuclear transfer blastocysts. Zygote 18:93-101.
  15. Lee, G. S., H. S. Kim, S. H. Hyun, D. Y. Kim, S. H. Lee, D. H. Nam, Y. W. Jeong, S. Kim, S. K. Kang, B. C. Lee, and W. S. Hwang. 2003. Improved developmental competence of cloned porcine embryos with different energy supplements and chemical activation. Mol. Reprod. Dev. 66:17-23.
  16. Lee, S. G., C. H. Park, D. H. Choi, H. S. Kim, H. H. Ka, and C. K. Lee. 2007. In vitro development and cell allocation of porcine blastocysts derived by aggregation of in vitro fertilized embryos. Mol. Reprod. Dev. 74:1436-1445.
  17. Li, M., Y. H. Li, Y. Hou, X. F. Sun, Q. Sun, and W. H. Wang. 2004. Isolation and culture of pluripotent cells from in vitro produced porcine embryos. Zygote 12:43-48.
  18. Masui, S., Y. Nakatake, Y. Toyooka, D. Shimosato, R. Yagi, K. Takahashi, H. Okochi, A. Okuda, R. Matoba, A. A. Sharov, M. S. Ko, and H. Niwa. 2007. Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat. Cell Biol. 9:625-635.
  19. Nagy, A. and J. Rossant. 2001. Chimaeras and mosaics for dissecting complex mutant phenotypes. Int. J. Dev. Biol. 45:577-582.
  20. Nagy, A., J. Rossant, R. Nagy, W. Abramow-Newerly, and J. C. Roder. 1993. Derivation of completely cell culture-derived mice from early-passage embryonic stem cells. Proc. Natl. Acad. Sci. USA. 90:8424-8428.
  21. Neganova, I. E., G. G. Sekirina, and U. Eichenlaub-Ritter. 2000. Surface-expressed E-cadherin, and mitocondrial and microtuble distrbution in rescue of mouse embryos from 2- cell block by aggregation. Mol. Hum. Reprod. 6:454-464.
  22. Park, J. K., H. S. Kim, K. J. Uh, K. H. Choi, H. M. Kim, T. Lee, B. C. Yang, H. J. Kim, H. H. Ka, H. Kim, and C. K. Lee. 2013. Primed pluripotent cell lines derived from various embryonic origins and somatic cells in PloS one 8:e52481.
  23. Petters, R. M. and K. D. Wells. 1993. Culture of pig embryos. J. Reprod. Fertil. Suppl. 48:61-73.
  24. Pickering, S. J., P. R. Braude, M. Patel, C. J. Burns, J. Trussler, V. Bolton, and S. Minger. 2003. Preimplantation genetic diagnosis as a novel source of embryos for stem cell research. Reprod. Biomed. Online 7:353-364.
  25. Talbot, N. C. and A. Blomberg Le. 2008. The pursuit of ES cell lines of domesticated ungulates. Stem Cell Rev. 4:235-254.
  26. Tang, P. C. and J. D. West. 2000. The effects of embryo stage and cell number on the composition of mouse aggregation chimaeras. Zygote 8:235-243.
  27. Vassiliev, I., S. Vassilieva, L. F. Beebe, S. J. Harrison, S. M. McIlfatrick, and M. B. Nottle. 2010. In vitro and in vivo characterization of putative porcine embryonic stem cells. Cell. Reprogram. 12:223-230.
  28. Wood, S. A., N. D. Allen, J. Rossant, A. Auerbach, and A. Nagy. 1993. Non-injection methods for the production of embryonic stem cell-embryo chimeras. Nature 365:87-89.
  29. Yoshioka, K., C. Suzuki, A. Tanaka, I. M. Anas, and S. Iwamura. 2002. Birth of piglets derived from porcine zygotes cultured in a chemically defined medium. Biol. Reprod. 66:112-119.
  30. Zhou, W., T. Xiang, S. Walker, R. V. Abruzzese, E. Hwang, V. Farrar, B. Findeisen, S. Sadeghieh, F. Arenivas, S. H. Chen, and I. Polejaeva. 2008. Aggregation of bovine cloned embryos at the four-cell stage stimulated gene expression and in vitro embryo development. Mol. Reprod. Dev. 75:1281-1289.


Supported by : Rural Development Administration