A Genome-wide Scan for Selective Sweeps in Racing Horses

  • Moon, Sunjin (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Lee, Jin Woo (Horse Registry, Korea Racing Authority (KRA)) ;
  • Shin, Donghyun (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University) ;
  • Shin, Kwang-Yun (Institute for Livestock Promotion) ;
  • Kim, Jun (Institute for Livestock Promotion) ;
  • Choi, Ik-Young (Genome analysis center, National Instrumentation and Environmental Management (NICEM), Seoul National University) ;
  • Kim, Jaemin (Interdisciplinary Program in Bioinformatics, Seoul National University) ;
  • Kim, Heebal (Department of Agricultural Biotechnology and Research Institute for Agriculture and Life Sciences, Seoul National University)
  • Received : 2014.09.08
  • Accepted : 2015.02.22
  • Published : 2015.11.01


Using next-generation sequencing, we conducted a genome-wide scan of selective sweeps associated with selection toward genetic improvement in Thoroughbreds. We investigated potential phenotypic consequence of putative candidate loci by candidate gene association mapping for the finishing time in 240 Thoroughbred horses. We found a significant association with the trait for Ral GApase alpha 2 (RALGAP2) that regulates a variety of cellular processes of signal trafficking. Neighboring genes around RALGAP2 included insulinoma-associated 1 (INSM1), pallid (PLDN), and Ras and Rab interactor 2 (RIN2) genes have similar roles in signal trafficking, suggesting that a co-evolving gene cluster located on the chromosome 22 is under strong artificial selection in racehorses.


Single Nucleotide Polymorphism;Racehorse;Selective Sweep;Quantitative Trait Loci


Supported by : KRA


  1. Browning, S. R. and B. L. Browning. 2007. Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering. Am. J. Hum. Genet. 81:1084-1097.
  2. Cunningham, E. P., J. J. Dooley, R. K. Splan, and D. G. Bradley. 2001. Microsatellite diversity, pedigree relatedness and the contributions of founder lineages to thoroughbred horses. Anim. Genet. 32:360-364.
  3. Duggal, P., E. M. Gillanders, T. N. Holmes, and J. E. Bailey-Wilson. 2008. Establishing an adjusted p-value threshold to control the family-wide type 1 error in genome wide association studies. BMC Genomics 9:516.
  4. Excoffier, L., T. Hofer, and M. Foll. 2009. Detecting loci under selection in a hierarchically structured population. Heredity 103:285-298.
  5. Excoffier, L. and H. E. L. Lischer. 2010. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10:564-567.
  6. Gilmour, A. R., B. J. Gogel, B. R. Cullis, R. Thompson, D. Butler, M. Cherry, D. Collins, G. Dutkowski, S. A. Harding, and K. Haskard. 2009. ASReml User Guide Release 3.0. VSN International Ltd., UK.
  7. Grobet, L., D. Pirottin, F. Farnir, D. Poncelet, L. J. Royo, B. Brouwers, E. Christians, D. Desmecht, F. Coignoul, R. Kahn, and M. Georges. 2003. Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35:227-238.
  8. Gu, J., N. Orr, S. D. Park, L. M. Katz, G. Sulimova, D. E. MacHugh, and E. W. Hill. 2009. A genome scan for positive selection in thoroughbred horses. PLoS One 4(6):e5767-e5767.
  9. Hill, E. W., D. G. Bradley, M. Al Barody, O. Ertugrul, R. Splan, I. Zakharov, and E. P. Cunningham. 2002. History and integrity of thoroughbred dam lines revealed in equine mtDNA variation. Anim. Genet. 33:287-294.
  10. Hill, E. W., J. Gu, S. S. Eivers, R. G. Fonseca, B. A. McGivney, P. Govindarajan, N. Orr, L. M. Katz, and D. MacHugh. 2010. A sequence polymorphism in MSTN predicts sprinting ability and racing stamina in Thoroughbred horses. PLoS One 5(1):e8645.
  11. Innan, H. and Y. Kim. 2008. Detecting local adaptation using the joint sampling of polymorphism data in the parental and derived populations. Genetics 179:1713-1720.
  12. Jacob, J., R. Storm, D. S. Castro, C. Milton, P. Pla, F. Guillemot, C. Birchmeier, and J. Briscoe. 2009. Insm1 (IA-1) is an essential component of the regulatory network that specifies monoaminergic neuronal phenotypes in the vertebrate hindbrain. Development 136:2477-2485.
  13. Jansen, T., P. Forster, M. A. Levine, H. Oelke, M. Hurles, C. Renfrew, J. Weber, and K. Olek. 2002. Mitochondrial DNA and the origins of the domestic horse. Proc. Natl. Acad. Sci. USA 99:10905-10910.
  14. Anisimova, M. and C. Kosiol. 2009. Investigating protein-coding sequence evolution with probabilistic codon substitution models. Mol. Biol. Evol. 26:255-271.
  15. Binns, M., D. A. Boehler, and D. H. Lambert. 2010. Identification of the myostatin locus (MSTN) as having a major effect on optimum racing distance in the Thoroughbred horse in the USA. Anim. Genet. 41:154-158.
  16. Kalashnikova, E., R. A. Lorca, I. Kaur, G. A. Barisone, B. Li, T. Ishimaru, J. S. Trimmer, D. P. Mohapatra, and E. Diaz. 2010. SynDIG1: An activity-regulated, AMPA-receptor-interacting transmembrane protein that regulates excitatory synapse development. Neuron 65:80-93.
  17. Kambadur, R., M. Sharma, T. P. L. Smith, and J. J. Bass. 1997. Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res. 7:910-915.
  18. Kim, K. I., Y. H. Yang, S. S. Lee, C. Park, R. Ma, J. L. Bouzat, and H. A. Lewin. 1999. Phylogenetic relationships of Cheju horses to other horse breeds as determined by mtDNA D-loop sequence polymorphism. Anim. Genet. 30:102-108.
  19. Lee, S. J. 2007. Sprinting without myostatin: A genetic determinant of athletic prowess. Trends Genet. 23:475-477.
  20. Li, H. and R. Durbin. 2009. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754-1760.
  21. Lindgren, G., N. Backstrom, J. Swinburne, L. Hellborg, A. Einarsson, K. Sandberg, G. Cothran, C. Vila, M. Binns, and H. Ellegren. 2004 Limited number of patrilines in horse domestication. Nat. Genet. 36:335-336.
  22. McGivney, B. A., J. A. Browne, R. G. Fonseca, L. M. Katz, D. E. MacHugh, R. Whiston, and E. W. Hill. 2012. MSTN genotypes in Thoroughbred horses influence skeletal muscle gene expression and racetrack performance. Anim. Genet. 43:810-812.
  23. McKenna, A., M. Hanna, E. Banks, A. Sivachenko, K. Cibulskis, A. Kernytsky, K. Garimella, D. Altshuler, S. Gabriel, M. Daly, and M. A. DePristo. 2010. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20:1297-1303.
  24. McPherron, A. C. and S. J. Lee. 1997. Double muscling in cattle due to mutations in the myostatin gene. Proc. Natl. Acad. Sci. USA 94:12457-12461.
  25. Nam, D. Y. 1969. Horse production in Cheju during Lee dynasty. Studies on Korean History 4:131-131.
  26. Nei, M. 1987. Molecular evolutionary genetics. Columbia Univ. Press, New York, NY, USA.
  27. Nei, M. and W. H. Li. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. 76:5269-5273.
  28. Orlando, L., A. Ginolhac, G. Zhang, D. Froese, A. Albrechtsen, M. Stiller, M. Schubert, E. Cappellini, B. Petersen, and I. Moltke et al. 2013. Recalibrating Equus evolution using the genome sequence of an early Middle Pleistocene horse. Nature 499:74-78.
  29. Park, K. D., H. Kim, J. Y. Hwang, C. K. Lee, K. T. Do, H. S. Kim, Y. M. Yang, Y. J. Kwon, J. Kim, H. J. Kim, K. D. Song, J. D. Oh, H. Kim, B. W. Cho, S. Cho, and H. K. Lee. 2014. Copy number deletion has little impact on gene expression levels in racehorses. Asian Australas. J. Anim. Sci. 27:1345-1354.
  30. Petersen, J. L., J. R. Mickelson, E. G. Cothran, L. S. Andersson, J. Axelsson, E. Bailey, D. Bannasch, M. M. Binns, A. S. Borges, and P. Brama et al. 2013. Genetic diversity in the modern horse illustrated from genome-wide SNP data. PLoS One 8(1):e54997.
  31. Purcell, S., B. Neale, K. Todd-Brown, L. Thomas, M. A. R. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. W. de Bakker, M. J. Daly, and P. C. Sham. 2007. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81:559-575.
  32. Qanbari, S., H. Pausch, S. Jansen, M. Somel, T. M. Strom, R. Fries, R. Nielsen, and H. Simianer. 2014. Classic selective sweeps revealed by massive sequencing in cattle. PLoS Genet. 10(2):e1004148.
  33. Riquetl, I., A. Schoeberleinl, S. Dunnerz, F. Menissier, and I. Massabanda. 1997. A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat. Genet. 17:71-71.
  34. Suzuki, J., Y. Yamazaki, L. Guang, Y. Kaziro, and H. Koide. 2000. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol. Cell. Biol. 20:4658-4665.
  35. Thomas, P. D., M. J. Campbell, A. Kejariwal, H. Mi, B. Karlak, R. Daverman, K. Diemer, A. Muruganujan, and A. Narechania. 2003. PANTHER: A library of protein families and subfamilies indexed by function. Genome Res. 13:2129-2141.
  36. Tozaki, T., T. Miyake, H. Kakoi, H. Gawahara, S. Sugita, T. Hasegawa, N. Ishida, K. Hirota, and Y. Nakano. 2010. A genome.wide association study for racing performances in Thoroughbreds clarifies a candidate region near the MSTN gene. Anim. Genet. 41:28-35.
  37. Vaysse, A., A. Ratnakumar, T. Derrien, E. Axelsson, G. Rosengren Pielberg, S. Sigurdsson, T. Fall, E. H. Seppala, M. S. Hansen, and C. T. Lawley et al. 2011. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping. PLoS Genet. 7(10):e1002316.
  38. Williamson, S. A. and R. G. Beilharz. 1998. The inheritance of speed, stamina and other racing performance characters in the Australian Thoroughbred. J. Anim. Breed. Genet. 115:1-16.
  39. Willing, E. M., C. Dreyer, and C. van Oosterhout. 2012. Estimates of genetic differentiation measured by $F_ST$ do not necessarily require large sample sizes when using many SNP markers. PLoS One 7(8):e42649.

Cited by

  1. Selection signature analysis reveals genes associated with tail type in Chinese indigenous sheep vol.48, pp.1, 2016,
  2. A genome-wide association study for harness racing success in the Norwegian-Swedish coldblooded trotter reveals genes for learning and energy metabolism vol.19, pp.1, 2018,
  3. Genome-Wide Signatures of Selection Reveal Genes Associated With Performance in American Quarter Horse Subpopulations vol.9, pp.1664-8021, 2018,
  4. Ancient genomes revisit the ancestry of domestic and Przewalski’s horses vol.360, pp.6384, 2018,
  5. A genome-wide scan for diversifying selection signatures in selected horse breeds vol.14, pp.1, 2019,