DOI QR코드

DOI QR Code

miR-9 Modulates Osteosarcoma Cell Growth by Targeting the GCIP Tumor Suppressor

  • Zhu, Shao-Wen (Tianjin Medical University) ;
  • Li, Jian-Peng (Department of Orthopedics, the Fifth Center Hospital of Tianjin) ;
  • Ma, Xin-Long (Department of Orthopedics, Tianjin Hospital) ;
  • Ma, Jian-Xiong (Department of Orthopedics, Tianjin Hospital) ;
  • Yang, Yang (Department of Orthopedics, Tianjin Hospital) ;
  • Chen, Yang (Department of Orthopedics, Tianjin Hospital) ;
  • Liu, Wei (Tianjin Medical University)
  • Published : 2015.06.26

Abstract

Osteosarcoma is the most common primary bone tumor in humans, especially in childhood. However, the genetic etiology for its pathogenesis remains elusive. It is known that microRNAs (miRNAs) are involved in the development of tumor progression. Here we show that microRNA-9 (miR-9) is a potential oncogene upregulated in osteosarcoma cells. Knockdown of miR-9 in osteosarcoma resulted in suppressed colony formation and cell proliferation. Further study identified GCIP, a Grap2 and cyclin D interacting protein, as a direct target of miR-9. In addition, GCIP overexpression activated retinoblastoma 1 (Rb) and suppressed E2F transcriptional target expression in osteosarcoma cells. Moreover, GCIP depletion reversed miR-9 knockdown induced colony formation and cell proliferation suppression. In sum, these results highlight the importance of miR-9 as an oncogene in regulating the proliferation of osteosarcoma by directly targeting GCIP and may provide new insights into the pathogenesis of osteosarcoma.

Keywords

miR-9;osteosarcoma;GCIP;proliferation;GCIP;tumor suppressor

References

  1. Bazzoni F, Rossato M, Fabbri M, et al (2009). Induction and regulatory function of miR-9 in human monocytes and neutrophils exposed to proinflammatory signals. Proc Natl Acad Sci USA, 106, 5282-7.
  2. Calin GA, Croce CM (2006). MicroRNA signatures in human cancers. Nature Rev Cancer, 6, 857-66. https://doi.org/10.1038/nrc1997
  3. Chang TW, Chen CC, Chen KY, et al (2008). Ribosomal phosphoprotein P0 interacts with GCIP and overexpression of P0 is associated with cellular proliferation in breast and liver carcinoma cells. Oncogene, 27, 332-8. https://doi.org/10.1038/sj.onc.1210651
  4. Chen KY, Chen CC, Tseng YL, et al (2014). GCIP functions as a tumor suppressor in non-small cell lung cancer by suppressing Id1-mediated tumor promotion. Oncotarget, 5, 5017-28. https://doi.org/10.18632/oncotarget.2075
  5. Chen WC, Su PF, Jin YT, et al (2008). Immunohistochemical expression of GCIP in breast carcinoma: relationship with tumour grade, disease-free survival, mucinous differentiation and response to chemotherapy. Histopathol, 53, 554-60. https://doi.org/10.1111/j.1365-2559.2008.03154.x
  6. Delaloy C, Liu L, Lee JA, et al (2010). MicroRNA-9 coordinates proliferation and migration of human embryonic stem cellderived neural progenitors. Cell Stem Cell, 6, 323-35. https://doi.org/10.1016/j.stem.2010.02.015
  7. Dorfman HD, Czerniak B (1995). Bone cancers. Cancer, 75, 203-10. https://doi.org/10.1002/1097-0142(19950101)75:1+<203::AID-CNCR2820751308>3.0.CO;2-V
  8. Gao F, Zhao ZL, Zhao WT, et al (2013). miR-9 modulates the expression of interferon-regulated genes and MHC class I molecules in human nasopharyngeal carcinoma cells. Biochem Biophys Res Commun, 431, 610-6. https://doi.org/10.1016/j.bbrc.2012.12.097
  9. Gao Y, Luo LH, Li S, et al (2014). miR-17 inhibitor suppressed osteosarcoma tumor growth and metastasis via increasing PTEN expression. Biochem Biophys Res Commun, 444, 230-4. https://doi.org/10.1016/j.bbrc.2014.01.061
  10. Ha M, Kim VN (2014). Regulation of microRNA biogenesis. Nature Rev Molecular Cell Biol, 15, 509-24. https://doi.org/10.1038/nrm3838
  11. He JP, Hao Y, Wang XL, et al (2014). Review of the molecular pathogenesis of osteosarcoma. Asian Pac J Cancer Prev, 15, 5967-76. https://doi.org/10.7314/APJCP.2014.15.15.5967
  12. Hildebrandt MA, Gu J, Lin J, et al (2010). Hsa-miR-9 methylation status is associated with cancer development and metastatic recurrence in patients with clear cell renal cell carcinoma. Oncogene, 29, 5724-8. https://doi.org/10.1038/onc.2010.305
  13. Jansson MD, Lund AH (2012). MicroRNA and cancer. Mol Oncol, 6, 590-610. https://doi.org/10.1016/j.molonc.2012.09.006
  14. John B, Enright AJ, Aravin A, et al (2004). Human microRNA targets. Plos Biology, 2, 1862-79.
  15. Kavitha N, Vijayarathna S, Jothy SL, et al (2014). MicroRNAs: biogenesis, roles for carcinogenesis and as potential biomarkers for cancer diagnosis and prognosis. Asian Pac J Cancer Prev, 15, 7489-97. https://doi.org/10.7314/APJCP.2014.15.18.7489
  16. Lee I, Yeom SY, Lee SJ, et al (2010). A novel senescence-evasion mechanism involving Grap2 and cyclin D interacting protein inactivation by ras associated with diabetes in cancer cells under doxorubicin treatment. Cancer Res, 70, 4357-65. https://doi.org/10.1158/0008-5472.CAN-09-3791
  17. Li CJ, Cong Y, Liu XZ, et al (2014). Research progress on the livin gene and osteosarcomas. Asian Pac J Cancer Prev, 15, 8577-9. https://doi.org/10.7314/APJCP.2014.15.20.8577
  18. Lv H, Guo J, Li S, et al (2014). inhibitor reduces the proliferation and migration in osteosarcoma MG-63 cells. Exp Ther Med, 8, 1575-80. https://doi.org/10.3892/etm.2014.1942
  19. Ma L, Young J, Prabhala H, et al (2010). miR-9, a MYC/MYCNactivated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol, 12, 247-56.
  20. Ma W, Xia X, Stafford LJ, et al (2006). Expression of GCIP in transgenic mice decreases susceptibility to chemical hepatocarcinogenesis. Oncogene, 25, 4207-16. https://doi.org/10.1038/sj.onc.1209450
  21. Moore DD, Luu HH (2014). Osteosarcoma. Cancer Treat Res, 162, 65-92. https://doi.org/10.1007/978-3-319-07323-1_4
  22. Mutsaers AJ, Walkley CR (2014). Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone, 62, 56-63. https://doi.org/10.1016/j.bone.2014.02.003
  23. Song B, Wang Y, Titmus MA, et al (2010). Molecular mechanism of chemoresistance by miR-215 in osteosarcoma and colon cancer cells. Mol Cancer, 9, 96. https://doi.org/10.1186/1476-4598-9-96
  24. Visani M, de Biase D, Marucci G, et al (2014). Expression of 19 microRNAs in glioblastoma and comparison with other brain neoplasia of grades I-III. Mol Oncol, 8, 417-30. https://doi.org/10.1016/j.molonc.2013.12.010
  25. Xia C, Bao Z, Tabassam F, et al (2000). GCIP, a novel human grap2 and cyclin D interacting protein, regulates E2F-mediated transcriptional activity. J Biol Chem, 275, 20942-8. https://doi.org/10.1074/jbc.M002598200
  26. Zhao H, Li M, Li L, et al (2013). MiR-133b Is down-regulated in human osteosarcoma and inhibits osteosarcoma cells proliferation, migration and invasion, and promotes apoptosis. PLoS ONE, 8, 83571. https://doi.org/10.1371/journal.pone.0083571
  27. Zhao SF, Zhang X, Zhang XJ, et al (2014). Induction of microRNA-9 mediates cytotoxicity of curcumin against SKOV3 ovarian cancer cells. Asian Pac J Cancer Prev, 15, 3363-8. https://doi.org/10.7314/APJCP.2014.15.8.3363
  28. Zhuang G, Wu X, Jiang Z, et al (2012). Tumour-secreted miR-9 promotes endothelial cell migration and angiogenesis by activating the JAK-STAT pathway. EMBO J, 31, 3513-23. https://doi.org/10.1038/emboj.2012.183

Cited by

  1. MiR-138 Acts as a Tumor Suppressor by Targeting EZH2 and Enhances Cisplatin-Induced Apoptosis in Osteosarcoma Cells vol.11, pp.3, 2016, https://doi.org/10.1371/journal.pone.0150026
  2. MiR-9 is overexpressed in spontaneous canine osteosarcoma and promotes a metastatic phenotype including invasion and migration in osteoblasts and osteosarcoma cell lines vol.16, pp.1, 2016, https://doi.org/10.1186/s12885-016-2837-5
  3. Prognostic Value of microRNA-9 in Various Cancers: a Meta-analysis vol.23, pp.3, 2017, https://doi.org/10.1007/s12253-016-0148-4
  4. Anti-miRNA oligonucleotides: A comprehensive guide for design vol.15, pp.3, 2018, https://doi.org/10.1080/15476286.2018.1445959
  5. Emerging roles of non-coding RNAs in the pathogenesis, diagnosis and prognosis of osteosarcoma pp.1573-0646, 2018, https://doi.org/10.1007/s10637-018-0624-7