LPS Up-Regulates ICAM-1 Expression in Breast Cancer Cells by Stimulating a MyD88-BLT2-ERK-Linked Cascade, Which Promotes Adhesion to Monocytes

  • Park, Geun-Soo (School of Life Sciences and Biotechnology, Korea University) ;
  • Kim, Jae-Hong (School of Life Sciences and Biotechnology, Korea University)
  • Received : 2015.06.16
  • Accepted : 2015.07.17
  • Published : 2015.09.30


Monocytes are the major inflammatory cells that infiltrate most solid tumors in humans. The interaction of tumor cells with infiltrating monocytes and their adhesion to these monocytes play a significant role in altering the tumor to become more aggressive. Recently, exposure to lipopolysaccharide (LPS) was suggested to promote cancer cell adhesion to monocytes; however, little is known about the details of the signaling mechanism involved in this process. In this study, we found that LPS up-regulates ICAM-1 expression in MDA-MB-231 breast cancer cells, which facilitates their adhesion to THP-1 monocytes. In addition, we analyzed the signaling mechanism underlying the up-regulation of ICAM-1 and found that the siRNA-mediated depletion of BLT2 markedly suppressed the LPS-induced expression of ICAM-1 in MDA-MB-231 cells and the subsequent adhesion of these cells to THP-1 monocytes. Moreover, we demonstrated that myeloid differentiation primary response gene 88 (MyD88) lies downstream of LPS/TLR4 and upstream of BLT2 and that this 'MyD88-BLT2' cascade mediates ERK activation and subsequent ICAM-1 expression, which is critical for the adhesion of MDA-MB-231 cells to THP-1 monocytes. Taken together, our results demonstrate for the first time that LPS up-regulates ICAM-1 expression in breast cancer cells via a MyD88-BLT2-ERK-linked signaling cascade, leading to the increased adhesion of breast cancer cells to monocytes.


Supported by : National Research Foundation


  1. Blot, E., Chen, W., Vasse, M., Paysant, J., Denoyelle, C., Pille, J.Y., Vincent, L., Vannier, J.P., Soria, J., and Soria, C. (2003). Cooperation between monocytes and breast cancer cells promotes factors involved in cancer aggressiveness. Br J. Cancer 88, 1207-1212.
  2. Cargnello, M., and Roux, P.P. (2011). Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol. Mol. Biol. Rev. 75, 50-83.
  3. Chaves, M.M., Marques-da-Silva, C., Monteiro, A.P., Canetti, C., and Coutinho-Silva, R. (2014). Leukotriene B4 modulates P2X7 receptor-mediated Leishmania amazonensis elimination in murine macrophages. J. Immunol. 192, 4765-4773.
  4. Chen, C., and Khismatullin, D.B. (2014). Lipopolysaccharide induces the interactions of breast cancer and endothelial cells via activated monocytes. Cancer Lett. 345, 75-84.
  5. Chittezhath, M., Dhillon, M.K., Lim, J.Y., Laoui, D., Shalova, I.N., Teo, Y.L., Chen, J., Kamaraj, R., Raman, L., Lum, J., et al. (2014). Molecular profiling reveals a tumor-promoting phenotype of monocytes and macrophages in human cancer progression. Immunity 41, 815-829.
  6. Coste, I., Le Corf, K., Kfoury, A., Hmitou, I., Druillennec, S., Hainaut, P., Eychene, A., Lebecque, S., and Renno, T. (2010). Dual function of MyD88 in RAS signaling and inflammation, leading to mouse and human cell transformation. J. Clin. Invest. 120, 3663-3667.
  7. Evani, S.J., Prabhu, R.G., Gnanaruban, V., Finol, E.A., and Ramasubramanian, A.K. (2013). Monocytes mediate metastatic breast tumor cell adhesion to endothelium under flow. FASEB J. 27, 3017-3029.
  8. Funk, C.D. (2001). Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294, 1871-1875.
  9. Huang, W.C., Chan, S.T., Yang, T.L., Tzeng, C.C., and Chen, C.C. (2004). Inhibition of ICAM-1 gene expression, monocyte adhesion and cancer cell invasion by targeting IKK complex: molecular and functional study of novel alpha-methylenegamma-butyrolactone derivatives. Carcinogenesis 25, 1925-1934.
  10. Hubbard, A.K., and Rothlein, R. (2000). Intercellular adhesion molecule-1 (ICAM-1) expression and cell signaling cascades. Free Radic. Biol. Med. 28, 1379-1386.
  11. Kim, J.Y., Lee, W.K., Yu, Y.G., and Kim, J.H. (2010). Blockade of LTB4-induced chemotaxis by bioactive molecules interfering with the BLT2-Galphai interaction. Biochem. Pharmacol. 79, 1506-1515.
  12. Kim, H., Choi, J.A., Park, G.S., and Kim, J.H. (2012). BLT2 upregulates interleukin-8 production and promotes the invasiveness of breast cancer cells. PLoS One 7, e49186.
  13. Kim, H., Park, G.S., Lee, J.E., and Kim, J.H. (2013a). A leukotriene B4 receptor-2 is associated with paclitaxel resistance in MCF-7/DOX breast cancer cells. Br J. Cancer 109, 351-359.
  14. Kim, J.Y., Kim, H., Jung, B.J., Kim, N.R., Park, J.E., and Chung, D.K. (2013b). Lipoteichoic acid isolated from Lactobacillus plantarum suppresses LPS-mediated atherosclerotic plaque inflammation. Mol. Cells 35, 115-124.
  15. Kim, H., Choi, J.A., and Kim, J.H. (2014). Ras promotes transforming growth factor-beta (TGF-beta)-induced epithelialmesenchymal transition via a leukotriene B4 receptor-2-linked cascade in mammary epithelial cells. J. Biol. Chem. 289, 22151-22160.
  16. Lee, S.J., Choi, E.K., Seo, K.W., Bae, J.U., Kim, Y.H., Park, S.Y., Oh, S.O., and Kim, C.D. (2013). 5-Lipoxygenase plays a pivotal role in endothelial adhesion of monocytes via an increased expression of Mac-1. Cardiovasc. Res. 99, 724-733.
  17. Lin, F.S., Lin, C.C., Chien, C.S., Luo, S.F., and Yang, C.M. (2005). Involvement of p42/p44 MAPK, JNK, and NF-kappaB in IL-1beta-induced ICAM-1 expression in human pulmonary epithelial cells. J. Cell Physiol. 202, 464-473.
  18. Mantovani, A., Allavena, P., Sica, A., and Balkwill, F. (2008). Cancerrelated inflammation. Nature 454, 436-444.
  19. Park, G.S., and Kim, J.H. (2015). Myeloid differentiation primary response gene 88-leukotriene B4 receptor 2 cascade mediates lipopolysaccharide-potentiated invasiveness of breast cancer cells. Oncotarget 6, 5749-5759.
  20. Powell, W.S., Gravel, S., Khanapure, S.P., and Rokach, J. (1999). Biological inactivation of 5-oxo-6,8,11,14-eicosatetraenoic acid by human platelets. Blood 93, 1086-1096.
  21. Rakoff-Nahoum, S., and Medzhitov, R. (2009). Toll-like receptors and cancer. Nat. Rev. Cancer 9, 57-63.
  22. Rosette, C., Roth, R.B., Oeth, P., Braun, A., Kammerer, S., Ekblom, J., and Denissenko, M.F. (2005). Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis 26, 943-950.
  23. Rui, W., Guan, L., Zhang, F., Zhang, W., and Ding, W. (2015). PM 2.5-induced oxidative stress increases adhesion molecules expression in human endothelial cells through the ERK/AKT/NFkappaB-dependent pathway. J. Appl. Toxicol. doi: 10.1002/jat.3143. [Epub ahead of print]
  24. Schroder, C., Witzel, I., Muller, V., Krenkel, S., Wirtz, R.M., Janicke, F., Schumacher, U., and Milde-Langosch, K. (2011). Prognostic value of intercellular adhesion molecule (ICAM)-1 expression in breast cancer. J. Cancer Res. Clin. Oncol. 137, 1193-1201.
  25. Seo, J.M., Cho, K.J., Kim, E.Y., Choi, M.H., Chung, B.C., and Kim, J.H. (2011). Up-regulation of BLT2 is critical for the survival of bladder cancer cells. Exp. Mol. Med. 43, 129-137.
  26. Seo, J.M., Park, S., and Kim, J.H. (2012). Leukotriene B4 receptor-2 promotes invasiveness and metastasis of ovarian cancer cells through signal transducer and activator of transcription 3 (STAT3)-dependent up-regulation of matrix metalloproteinase 2. J. Biol. Chem. 287, 13840-13849.
  27. Silverman, M.D., Zamora, D.O., Pan, Y., Texeira, P.V., Planck, S.R., and Rosenbaum, J.T. (2001). Cell adhesion molecule expression in cultured human iris endothelial cells. Invest Ophthalmol. Vis. Sci. 42, 2861-2866.
  28. Usami, Y., Ishida, K., Sato, S., Kishino, M., Kiryu, M., Ogawa, Y., Okura, M., Fukuda, Y., and Toyosawa, S. (2013). Intercellular adhesion molecule-1 (ICAM-1) expression correlates with oral cancer progression and induces macrophage/cancer cell adhesion. Int. J. Cancer 133, 568-578.
  29. van de Stolpe, A., and van der Saag, P.T. (1996). Intercellular adhesion molecule-1. J. Mol. Med. 74, 13-33.
  30. Watanabe, N., Shikata, K., Shikata, Y., Sarai, K., Omori, K., Kodera, R., Sato, C., Wada, J., and Makino, H. (2011). Involvement of MAPKs in ICAM-1 expression in glomerular endothelial cells in diabetic nephropathy. Acta Med. Okayama 65, 247-257.
  31. Zhu, X.W., and Gong, J.P. (2013). Expression and role of icam-1 in the occurrence and development of hepatocellular carcinoma. Asian Pac. J. Cancer Prev. 14, 1579-1583.

Cited by

  1. Anti-inflammatory action of ethanolic extract of Ramulus mori on the BLT2-linked cascade vol.49, pp.4, 2016,
  2. Leukotriene B4 receptor-2 contributes to chemoresistance of SK-OV-3 ovarian cancer cells through activation of signal transducer and activator of transcription-3-linked cascade vol.1863, pp.2, 2016,
  3. 5-/12-Lipoxygenase-linked cascade contributes to the IL-33-induced synthesis of IL-13 in mast cells, thus promoting asthma development 2017,
  4. BLT2, a leukotriene B4 receptor 2, as a novel prognostic biomarker of triple-negative breast cancer vol.51, pp.8, 2018,
  5. Macromolecular crowding tunes 3D collagen architecture and cell morphogenesis vol.7, pp.2, 2019,