DOI QR코드

DOI QR Code

방사선 조사된 국내 야생 등줄쥐 (Apodemus agrarius coreae) 장기무게 및 비장세포 세포고사

Organ Weights and Splenocytic Apoptosis in γ-irradiated Korean Dark-Striped Field Mice, Apodemus Agrarius Coreae

  • 주현진 (한국수력원자력(주) 방사선보건원) ;
  • 최훈 (한국수력원자력(주) 방사선보건원) ;
  • 양광희 (한국수력원자력(주) 방사선보건원) ;
  • 금동권 (한국원자력연구원 원자력환경연구부) ;
  • 김희선 (한국수력원자력(주) 방사선보건원)
  • Joo, Hyunjin (Radiation Health Research Institute, Korea Hydro & Nuclear Power Co. Ltd.) ;
  • Choi, Hoon (Radiation Health Research Institute, Korea Hydro & Nuclear Power Co. Ltd.) ;
  • Yang, Kwang-hee (Radiation Health Research Institute, Korea Hydro & Nuclear Power Co. Ltd.) ;
  • Keum, Dong-kwon (Nuclear Environment Research Division, Korea Atomic Energy Research Institute) ;
  • Kim, Hee sun (Radiation Health Research Institute, Korea Hydro & Nuclear Power Co. Ltd.)
  • 투고 : 2015.04.30
  • 심사 : 2015.08.17
  • 발행 : 2015.09.30

초록

이 연구에서 후쿠시마 원전 폭발과 같은 사고 발생 시 방사선이나 방사성 핵종에 의한 생물학적 영향을 평가할 수 있는 야생 동물지표로서 성축 등줄쥐(A. a. coreae) 활용 가능성을 평가하였다. 이 연구를 위하여 야외 채집한 등줄쥐를 실험실에서 교배하고 생산된 새끼가 약 40주령이 되었을 때 털 색깔, 외부형태, 두개골, 치아 특성을 관찰하고 분류학적 특성을 정리하였다. 방사선에 대한 신체 반응도를 평가하기 위하여 방사선 조사(0, 0.5, 1, 2 Gy) 24시간 후에 장기무게를 관찰한 결과 흉선만이 감소하였다. 방사선에 민감한 장기 가운데 하나인 비장 세포고사는 선량에 비례하여 증가하였지만, 0.5 Gy 조사된 개체에서는 감소하였다. 앞으로 야생 등줄쥐 신체 장기별 방사선 민감도 차이를 세포 및 분자생물학적 수준에서 해석함으로써 방사선 피폭 사고시 신체영향을 평가할 수 있는 방법론 도출이 가능할 것이라 생각된다.

과제정보

연구 과제 주관 기관 : 한국연구재단

참고문헌

  1. International Atomic Energy Agency. A methodology for assessing impacts of radioactivity on aquatic ecosystems. IAEA Technical Reports Series No 190. 1979.
  2. International Atomic Energy Agency. Assessing the effect of deep sea disposal of low level radioactive waste on living organisms. IAEA Technical Reports Series No 288. 1988.
  3. International Atomic Energy Agency. Effects of ionizing radiation on plants and animals at levels implied by current radiation protection standards. IAEA Technical Reports Series No 322. 1992.
  4. International Atomic Energy Agency. Ethical considerations in protecting the environment from the effects of ionizing radiation. IAEA. 2002.
  5. Shirashi K, Yamamoto M. Internal dose from ingestion for Japanese adult males. Health Phys. 1996;71(5):700-704. https://doi.org/10.1097/00004032-199611000-00009
  6. Tagami K, Uchiyama S. Analysis of Technetium-99 in soil and deposition samples by inductively coupled plasma mass spectrometry. Appl Radiat Isotopes. 1996;47:1057-1060. https://doi.org/10.1016/S0969-8043(96)00106-6
  7. Yukawa M, Watanabe Y, Nishimura Y, Guo Y, Yongru Z, Lu H, Wei L, Tao Z. Determination of U and Th in soil and plants obtained from a high natural radiation area in China using ICP-MS and ${\gamma}$-counting. Fresenius J Anal Chem. 1999;363: 760-777. https://doi.org/10.1007/s002160051287
  8. Kim JK, Lee YK, Kim JS, Shin HS, Hyun HS. Effects of combined irradiation of neutrons and gamma rays on the pink mutation frequencies in Tradescantia. J Radiat Prot. 2000;25(2):67-73.
  9. Kim R, Han DU, Lim JT, Jo SK, Kim TH. Induction of micronuclei in human, goat, rabbit peripheral blood lymphocytes and mouse splenic lymphocytes irradiated in vitro with gamma radiation. Mutat Res. 1997;393(3):207-214. https://doi.org/10.1016/S1383-5718(97)00103-4
  10. Roderick T. The response of twenty-seven inbred strains of mice to dairy doses of whole-body X-irradiation. Radiation Res. 1963;20:631-639. https://doi.org/10.2307/3571354
  11. Yonezawa M, Misonoh J, Hosokawa Y. Two types of X-ray-induced radioresistance in mice: Presence of 4 dose ranges with distinct biological effects. Mutat Res. 1996;358:237-243. https://doi.org/10.1016/S0027-5107(96)00126-1
  12. Wickliffe JK, Chesser RK, Rodgers BE, Baker RJ. Assessing the genotoxicity of chronic environmental irradiation by using mitochondria DNA heteroplasmy in the bank vole (Clethrionomys glareolus) at Chornobyl. Ukraine Environ Toxicol Chem. 2005;21(6):1249-1254.
  13. Abramsson-Zetterberg LJG, Zetterberg G. Spontaneous and radiation-induced micronuclei in erythrocytes from four species of wild rodents: a comparison with CBA mice. Mutat Res. 1997;393(1-2): 55-71. https://doi.org/10.1016/S1383-5718(97)00086-7
  14. Tsiperson VP, Soloviev MY. The impact of chronic radioactive stress on the immuno- physiological condition of small mammals. Sci Total Environ. 1997;203(2):105-113. https://doi.org/10.1016/S0048-9697(97)00138-1
  15. Woon BO. Illustrated encyclopedia of fauna and flora of Korea. Vol. 7. Mammals. 1967:214-222.
  16. Koh HS. A study on age variation and secondary sexual dimorphism in morphometric characters of korean rodents: I. An analysis on striped field mice, Apodemus agrarius coreae Thomas, from Cheongju. Korean J Zool. 1983;26(2):125-134.
  17. Jones JK, Johnson DH. Synopsis of the lagomorphs and rodents of Korea. University of Kansas Publications, Museum of Natural History. 1965;16(2):357-407.
  18. Cobet GB. The mammals of the palaearctic region: a taxonomic review. British Museum (Natural History), Cornell University Press. 1978: 130-137.
  19. Choi JM, Kim HS, Yang KH, Kim CS, Lim YK, Kim CS, Woon JH. Acridine orange stained micronucleus assay in human B and T-lymphocytes after low dose ${\gamma}$-irradiation. J Radiat Prot. 2004; 29(1):9-15.
  20. Vral A, Louagie H, Thierens H, Philippe M, Ridder L. Micronucleus frequences in cytokinesis-blocked human B lymphocytes after low dose gamma-irradiation. Int J Radiat Biol. 1998;73: 549-555. https://doi.org/10.1080/095530098142103
  21. Bong JJ, Kang YM, Shin SC, Choi SJ, Lee KM, Kim HS. Differential expression on thymic DNA repair genes in low-dose-rate irradiate AKR/J mice. J Vet Sci. 2013;14(3):271-279. https://doi.org/10.4142/jvs.2013.14.3.271