DOI QR코드

DOI QR Code

Comparative analysis of methods for digital simulation

디지털 전산모사를 위한 방법론 비교분석

  • 이덕균 (대구대학교 기초교육대학) ;
  • 박지은 (대구대학교 기초교육대학)
  • Received : 2015.07.21
  • Accepted : 2015.09.20
  • Published : 2015.09.28

Abstract

Computer simulation plays an important role for a theoretical foundation in convergence technology and the interpolation is to know the unknown values from known values on grid points. Therefore it is an important problem to select an interpolation method for digital simulation. The aim of this paper is to compare analysis of interpolation methods for digital simulation. we test six different interpolation methods namely: Quartic-Lagrangian, Cubic Spline, Fourier, Hermit, PWENO and SL-WENO. Through digital simulation of a linear advection equation, we analyse pros and cons for each method. In order to compare performance, we introduce accuracy computing and Error functions. The accuracy computing is used well-known $L^1-norm$ and the Error functions are dispersion function, dissipation function and total error function. High-order methods well apply to computer simulation, unfortunately, side-effects (Oscillation) happen.

Keywords

Computer simulation;Backward semi-Lagrangian method;Interpolation;Convergence technology;WENO;PWENO;SL-WENO

References

  1. N. Crouseilles, T. Respanud, E. Sonnendrucker, A Forward semi-Lagrangian method for the numerical solution of the Vlasov equation. Computer Physics Communications, Vol. 180, pp. 1730-1745, 2009. https://doi.org/10.1016/j.cpc.2009.04.024
  2. E. Sonnendrucker, J. Roche, P. Bertrand, A. Ghizzo, The semi-lagrangian method for the numerical resolution of the Vlasov equation. Journal of Computer Physics, Vol. 149, pp. 201-220, 1999. https://doi.org/10.1006/jcph.1998.6148
  3. A. Staniforth, J. Cote, Semi-Lagrangian integration schemes for atmospheric models A review. Monthly Weather Review, Vol. 119, pp. 2206-2223, 1991. https://doi.org/10.1175/1520-0493(1991)119<2206:SLISFA>2.0.CO;2
  4. M. Zerroukat, N. Wood, A. Staniforth, A monotonic and positive-definite filter for a Semi-Lagrangian Inherently Conserving and Efficient (SLICE) scheme. Q. J. R. Meteorol. Soc., Vol. 131, pp. 2923-2936, 2005. https://doi.org/10.1256/qj.04.97
  5. M. Zerroukat, N. Wood, A. Staniforth, The Parabolic Spline Method (PSM) for conservative transport problems. International Journal of Numerical Methods Fluids, Vol. 51, pp. 1297-1318, 2006. https://doi.org/10.1002/fld.1154
  6. J. M. Qui, A. Christlieb, A Conservative high order semi-Lagrangian WENO method for the Vlasov equation. Journal of Computational Physics, Vol. 229, pp. 1130-1149, 2010. https://doi.org/10.1016/j.jcp.2009.10.016
  7. C. Z. Cheng, G. Knorr, The integration of the Vlasov equation in configuration space. Journal of Computational Physics, Vol. 22, pp. 330-351, 1976. https://doi.org/10.1016/0021-9991(76)90053-X
  8. J. A. Carrillo, F. Vecil, Nonoscillatory interpolation methods applied to Vlasov-Based models. SIAM Journal on Scientific Computing, Vol. 29, No. 3, pp. 1179-1206, 2007. https://doi.org/10.1137/050644549
  9. S. G. Wallis, J. R. Manson, Accurate numerical simulation of advection using large time steps. International Journal for Numerical Methods in Fluids, Vol. 24, pp. 127-139, 1997. https://doi.org/10.1002/(SICI)1097-0363(19970130)24:2<127::AID-FLD477>3.0.CO;2-R
  10. G.-S. Jiang, C.-W. Shu, Efficient implementation of weighted ENO schemes. Journal of Computational Physics, Vol. 126, pp. 202-228, 1996. https://doi.org/10.1006/jcph.1996.0130
  11. R. J. Leveque, High-resolution Conservative Algorithms for Advection in Incompressible Flow. SIAM Journal on Numerical Analysis, Vol. 33, No. 2, pp. 627-665, 1996. https://doi.org/10.1137/0733033
  12. X.-D. Liu, S. Osher, T. Chan, Weighted essentially non-oscillatory schemes. Journal of Computational Physics, Vol. 115, pp. 200-212, 1994. https://doi.org/10.1006/jcph.1994.1187
  13. C.-W. Shu, High order weighted essentially non-oscillatory schemes for convection dominated problems. SIAM Review, Vol. 51, pp. 82-126, 2009. https://doi.org/10.1137/070679065
  14. C.-W. Shu, S. Osher, Efficient implementation of essentially non-oscillatory shock-capturing schemes. Journal of Computational Physics, Vol. 77, No. 2, pp. 439-471, 1988. https://doi.org/10.1016/0021-9991(88)90177-5
  15. L. L. Takacs, A two-step scheme for the advection equation with minimized dissipation and dispersion errors. Monthly Weather Review, Vol. 113, pp. 1050-1065, 1985. https://doi.org/10.1175/1520-0493(1985)113<1050:ATSSFT>2.0.CO;2