DOI QR코드

DOI QR Code

Serotonin as a Possible Modulator of Impulsive Behavior in Wistar Rats

위스타 랫드의 충동성 조절에 대한 세로토닌의 역할

  • Kim, Chong Ah (Uimyung Research Institute for Neuroscience, Sahmyook University) ;
  • Cheong, Jae Hoon (Uimyung Research Institute for Neuroscience, Sahmyook University)
  • 김정아 (삼육대학교 의명신경과학연구소) ;
  • 정재훈 (삼육대학교 의명신경과학연구소)
  • Received : 2015.07.10
  • Accepted : 2015.08.04
  • Published : 2015.08.30

Abstract

We compared impulsive behaviors in Wistar rats and in Wistar-Kyoto rats. There was no significant difference in locomotor activity between them. However, Wistar rats showed high activity in 5-choice serial reaction time track. When Wistar rats were treated with atomoxetin (3 mg/kg), methylphenidate (2 mg/kg) or amphetamine (2 mg/kg), they showed less impulsive behavior. Serotonin contents in prefrontal cortex and brain stem also increased. In conclusion, we suggest that Wistar rats could be used as animal model for impulsive behavior analysis. In addition, serotonin might be related with this impulsivity.

Acknowledgement

Supported by : 삼육대학교

References

  1. Clause, B. T. : The Wistar Institute Archives: Rats (Not Mice) and History. Mendel Newsl. Feb(7), 2 (1998).
  2. Bizot, J. C., Chenault, N., Houze, B., Herpin, A., David, S., Pothion, S. and Trovero, F. : Methylphenidate reduces impulsive behaviour in juvenile Wistar rats, but not in adult Wistar, SHR and WKY rats. Psychopharmacology (Berl) 193, 215 (2007). https://doi.org/10.1007/s00213-007-0781-4
  3. Drolet, G., Proulx, K., Pearson, D., Rochford, J. and Deschepper, C. F. : Comparisons of behavioral and neurochemical characteristics between WKY, WKHA, and Wistar rat strains. Neuropsychopharmacolog 27, 400 (2002). https://doi.org/10.1016/S0893-133X(02)00303-2
  4. Ibias, J. and Pellon, R. : Different relations between schedule-induced polydipsia and impulsive behaviour in the Spontaneously Hypertensive Rat and in high impulsive Wistar rats: Questioning the role of impulsivity in adjunctive behaviour. Behav. Brain. Res. 271, 184 (2014). https://doi.org/10.1016/j.bbr.2014.06.010
  5. Zhang-James, Y., Middleton, F.A. and Faraone, S. V. : Genetic architecture of Wistar-Kyoto rat and spontaneously hypertensive rat substrains from different sources. Physiol. Genomics 45, 528 (2013). https://doi.org/10.1152/physiolgenomics.00002.2013
  6. Ainslie, G. : Breakdown of Will. Cambridge University Press, Cambridge; New York (2001).
  7. Evenden, J. L. : Varieties of impulsivity. Psychopharmacology 146, 348 (1999). https://doi.org/10.1007/PL00005481
  8. Groman, S. M., James, A. S. and Jentsch, J. D. : Poor response inhibition: at the nexus between substance abuse and attention deficit/hyperactivity disorder. Neurosci. Biobehav. Rev. 33, 690 (2009). https://doi.org/10.1016/j.neubiorev.2008.08.008
  9. Garza, K. B., Ding, M., Owensby, J. K. and Zizza, C. A. : Impulsivity and fast-food consumption: A cross-sectional study among working adults. J. Acad. Nutr. Diet. pii: S2212 (2015).
  10. Dickman, S. J. : Functional and dysfunctional impulsivity: personality and cognitive correlates. J. Pers. Soc. Psychol. 58, 95 (1990). https://doi.org/10.1037/0022-3514.58.1.95
  11. Patton, J. H., Stanford, M. S. and Barratt, E. S. : Factor structure of the Barratt impulsiveness scale. J. Clin. Psychol. 51, 768 (1995). https://doi.org/10.1002/1097-4679(199511)51:6<768::AID-JCLP2270510607>3.0.CO;2-1
  12. Moreno, M., Cardona, D., Gomez, M. J., Sanchez-Santed, F., Tobena, A., Fernandez-Teruel, A., Campa, L., Sunol, C., Escarabajal, M. D., Torres, C. and Flores, P. : Impulsivity characterization in the Roman high- and low-avoidance rat strains: behavioral and neurochemical differences. Neuropsychopharmacology 35, 1198 (2010). https://doi.org/10.1038/npp.2009.224
  13. Adriani, W., Caprioli, A., Granstrem, O., Carli, M. and Laviola, G. : The spontaneously hypertensive-rat as an animal model of ADHD: evidence for impulsive and non-impulsive subpopulations. Neurosci. Biobehav. Rev. 27, 639 (2003). https://doi.org/10.1016/j.neubiorev.2003.08.007
  14. Dalley, J. W., Fryer, T. D., Brichard, L., Robinson, E. S., Theobald, D. E., Laane, K., Pena, Y., Murphy, E. R., Shah, Y., Probst, K., Abakumova, I., Aigbirhio, F. I., Richards, H. K., Hong, Y., Baron, J. C., Everitt, B. J. and Robbins, T. W. : Nucleus accumbens D2/3 receptors predict trait impulsivity and cocaine reinforcement. Science 315, 1267 (2007). https://doi.org/10.1126/science.1137073
  15. Broos, N., Diergaarde, L., Schoffelmeer, A. N., Pattij, T. and De Vries, T. J. : Trait impulsive choice predicts resistance to extinction and propensity to relapse to cocaine seeking: a bidirectional investigation. Neuropsychopharmacology 37, 1377 (2012). https://doi.org/10.1038/npp.2011.323
  16. Perry, J. L., Joseph, J. E., Jiang, Y., Zimmerman, R. S., Kelly, T. H., Darna, M., Huettl, P., Dwoskin, L. P. and Bardo M. T. : Prefrontal cortex and drug abuse vulnerability: Translation to prevention and treatment interventions. Brain. Res. Rev. 65, 124 (2011). https://doi.org/10.1016/j.brainresrev.2010.09.001
  17. Jupp, B., Caprioli, D. and Dalley, J. W. : Highly impulsive rats: modelling an endophenotype to determine the neurobiological, genetic and environmental mechanisms of addiction. Dis. Models Mech. 6, 302 (2013). https://doi.org/10.1242/dmm.010934
  18. Yoon, S. Y., Dela Pena, I., Kim, S. M., Woo, T. S., Shin, C. Y., Son, K. H., Park, H., Lee, Y. S., Ryu, J. H., Jin, M., Kim, K. M. and Cheong, J. H. Oroxylin A improves attention deficit hyperactivity disorder-like behaviors in the spontaneously hypertensive rat and inhibits reuptake of dopamine in vitro. Arch. Pharm. Res. 36, 134 (2013). https://doi.org/10.1007/s12272-013-0009-6
  19. Spijker, S. : Dissection of rodent brain regions. Ka Wan Li (Ed.), Neuroproteomics, Springer, New York, p.13 (2011).
  20. Cannazza, G., Di Stefano, A., Mosciatti, B., Braghiroli, D., Baraldi, M., Pinnen, F., Sozio, P., Benatti, C. and Parenti, C. : Detection of levodopa, dopamine and its metabolites in rat striatum dialysates following peripheral administration of l-DOPA prodrugs by mean of HPLC-EC. J. Pharm. Biomed. Anal. 36, 1079 (2005). https://doi.org/10.1016/j.jpba.2004.09.029
  21. Nasuti, C., Carloni, M., Fedeli, D., Gabbianelli, R., Di Stefano, A., Serafina, C. L., Silva, I., Domingues, V. and Ciccocioppo, R. : Effects of early life permethrin exposure on spatial working memory and on monoamine levels in different brain areas of pre-senescent rats. Toxicology 303, 162 (2013). https://doi.org/10.1016/j.tox.2012.09.016
  22. Yetnikoff, L. and Arvanitogiannis, A. : Differential sensitivity to the acute and sensitizing behavioral effects of methylphenidate as a function of strain in adolescent and young adult rats. Behav. Brain Funct. 9, 38 (2013). https://doi.org/10.1186/1744-9081-9-38
  23. Valvassori, S. S., Frey, B. N., Martins, M. R., Reus, G. Z., Schimidtz, F., Inacio, C. G., Kapczinski, F. and Quevedo, J. : Sensitization and cross-sensitization after chronic treatment with methylphenidate in adolescent Wistar rats. Behav. Pharmacol. 18, 205 (2007). https://doi.org/10.1097/FBP.0b013e328153daf5
  24. Li, Q., Lu, G., Antonio, G. E., Mak, Y. T., Rudd, J. A., Fan, M. and Yew, D. T. : The usefulness of the spontaneously hypertensive rat to model attention-deficit/hyperactivity disorder (ADHD) may be explained by the differential expression of dopamine-related genes in the brain. Neurochem. Int. 50, 848 (2007). https://doi.org/10.1016/j.neuint.2007.02.005
  25. Sagvolden, T. : Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci. Biobehav. Rev. 24, 31 (2000). https://doi.org/10.1016/S0149-7634(99)00058-5
  26. Sunohara, G. A., Malone, M. A., Rovet, J., Humphries, T., Roberts, W. and Taylor, M. J. : Effect of methylphenidate on attention in children with attention deficit hyperactivity disorder (ADHD): ERP evidence. Neuropsychopharmacology 21, 218 (1999). https://doi.org/10.1016/S0893-133X(99)00023-8
  27. Dommett, E. J. : Using the five-choice serial reaction time task to examine the effects of atomoxetine and methylphenidate in the male spontaneously hypertensive rat. Pharmacol. Biochem. Behav. 124, 196 (2014). https://doi.org/10.1016/j.pbb.2014.06.001
  28. Slezak, J. M. and Anderson, K. G. : Effects of acute and chronic methylphenidate on delay discounting. Pharmacol. Biochem. Behav. 99, 545 (2011). https://doi.org/10.1016/j.pbb.2011.05.027
  29. Bymaster, F. P., Katner, J. S., Nelson, D. L., Hemrick-Luecke, S. K., Threlkeld, P. G., Heiligenstein, J. H., Morin, S. M., Gehlert, D. R. and Perry, K. W. :. Atomoxetine increases extracellular levels of norepinephrine and dopamine in prefrontal cortex of rat: a potential mechanism for efficacy in attention deficit/hyperactivity disorder. Neuropsychopharmacology 27, 699 (2002). https://doi.org/10.1016/S0893-133X(02)00346-9
  30. Pillidgea, K., Portera, A. J., Vasilia, T., Healb, D. J. and Stanforda, S. C. : Atomoxetine reduces hyperactive/impulsive behaviours in neurokinin-1 receptor 'knockout' mice. Pharmacol. Biochem. Behav. 127, 56 (2014). https://doi.org/10.1016/j.pbb.2014.10.008
  31. Winstanley, C. A., Eagle, D. M. and Robbins, T. W. : Behavioral models of impulsivity in relation to ADHD: translation between clinical and preclinical studies. Clin. Psychol. Rev. 26, 379 (2006). https://doi.org/10.1016/j.cpr.2006.01.001
  32. Dalley, J. W. and Roiser, J. P. : Dopamine, serotonin and impulsivity. Neuroscience 215, 42 (2012). https://doi.org/10.1016/j.neuroscience.2012.03.065
  33. Floresco, S. B., Tse, M. T. and Ghods-Sharifi, S. : Dopaminergic and glutamatergic regulation of effort- and delay-based decision making. Neuropsychopharmacology 33, 1966 (2008). https://doi.org/10.1038/sj.npp.1301565
  34. Boy, F., Evans, C. J., Edden, R. A., Lawrence, A. D., Singh, K. D., Husain, M. and Sumner, P. : Dorsolateral prefrontal gamma-aminobutyric acid in men predicts individual differences in rash impulsivity. Biol. Psychiatry 70, 866 (2011). https://doi.org/10.1016/j.biopsych.2011.05.030