DOI QR코드

DOI QR Code

MANY VALUED LOGIC AND INTUITIONISTIC FUZZY SETS: A STONE THEOREM GENERALIZATION

  • AMROUNE, ABDELAZIZ (Laboratory Pure and Applied Mathematics, Msila University) ;
  • DAVVAZ, BIJAN (Department of Mathematics, Yazd University)
  • Received : 2015.03.19
  • Accepted : 2015.06.17
  • Published : 2015.09.25

Abstract

Atanassov introduced another fuzzy object, called intu- itionistic fuzzy set as a generalization of the concept of fuzzy subset. The aim of this paper is the elaboration of a representation theory of involutive interval-valued Łukasiewicz-Moisil algebras by using the notion of intuitionistic fuzzy sets.

Keywords

Lukasiewicz-Moisil algebra;Intuitionistic fuzzy sets;Stone monomorphism

References

  1. A. Amroune, Representation des algebres de Lukasiewicz ${\theta}$-valentes involutives par des structures floues, Bulletin for Studied and Exchanges on Fuzziness and its Applications (BUSEFAL) 43 (1990), 5-11.
  2. K. T. Atanassov, Intuitionistic fuzzy sets, VII ITKR's Session, Sofia, June 1983, Deposed in Central Sci. Techn. Library of Bulg. Acad. of Sci., 1984 (in Bulgarian).
  3. K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets and Systems 20 (1986), 87-96. https://doi.org/10.1016/S0165-0114(86)80034-3
  4. K. T. Atanassov and G. Gargov, Interval valued intuitionistic fuzzy sets, Fuzzy Sets and Systems, 31 (1989), 343-349. https://doi.org/10.1016/0165-0114(89)90205-4
  5. K. T. Atanassov, Intuitionistic fuzzy sets, Physica-Verlag, Heidelberg, New York, 1999.
  6. R. Biswas, On fuzzy sets and intuitionistic fuzzy sets, Notes on Intuitionistic Fuzzy Sets 3 (1997), 3-11.
  7. V. Boicescu, A. Filipoiu, G. Georgescu, and S. Rudeanu, Lukasiewicz Moisil algebras, North Holland, Elsevier, Amesterdam, New York, 1991.
  8. R. Cignoli, Algebras de Moisil, Notas de Logica Matematica, 27, Instituto de Matematica, Universidad del Sur, Bahia Blanca, 1970.
  9. J. Coulon and J. L. Coulon, Un nouveau resultat concernant la representation d'une algebre de Lukasiewicz involutive dans l'algebre des parties floues d'une structure floue involutive, Rev. Roumaine Math. Pures et Appl. 38 (1993), 319-326.
  10. M. De Glas, Representation of Lukasiewicz many-valued algebras, J. Math. Anal. Appl. 114 (1986), 315-327. https://doi.org/10.1016/0022-247X(86)90086-7
  11. GR. C. Moisil, Notes sur les logiques non-chrysippiennes, Ann. Sci. Univ. Jassy 27 (1941), 86-98.
  12. GR. C. Moisil, Lukasiewician algebras, Preprint, Competing Center, Univ. of Bucharest, 1968.
  13. GR. C. Moisil, Essais sur les logiques non chrysippiennes, Editions de l'Academie, Bucarest 1972.
  14. GR. C. Moisil, Ensembles flous et logiques a plusieurs valeurs, Univ. de Montreal, Mai 1973.
  15. GR. C. Moisil, Sur l'emploi des mathematiques dans les sciences de l'homme, Accd. Naz. Lincei. Contributi del Centro Linceo Interdisciplinare di Sci. Mat. e loro Appl. 17 (1976), 5-31.
  16. C. V. Negoita and D. A. Ralescu, Applications of Fuzzy Sets to System Analysis, Birkhauser Verlag, Basel-Stuttgart,, 1975.
  17. D. Ponasse, Algebres floues et algebres de Lukasiewicz, Rev. Roumaine Math. Pures et Appl. 23 (1978), 103-111.
  18. S. Rudeanu, On Lukasiewicz Moisil algebras of fuzzy sets, Studia Logica 52 (1993), 95-111. https://doi.org/10.1007/BF01053066
  19. M. H. Stone, The theory of representation for Boolean algebras, Trans. Amer. Math. Soc. 40 (1936), 37-111.
  20. Guo-Jun Wang and Ying-Yutte, Intuitionistic fuzzy sets and L-fuzzy sets, Fuzzy Sets and Systems 110 (2000), 271-274. https://doi.org/10.1016/S0165-0114(98)00011-6
  21. L. Zedam and A. Amroune, On the representation of L-M algebra by intuitionistic fuzzy subsets, Int. J. Math. Anal. 1(2) (2006), 189-200.
  22. L. A. Zadeh, Fuzzy sets, Inform. Control 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X