DOI QR코드

DOI QR Code

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V. (Saint Petersburg Electrotechnical University "LETI") ;
  • Gareev, K.G. (Saint Petersburg Electrotechnical University "LETI") ;
  • Ionin, S.A. (Saint Petersburg Electrotechnical University "LETI") ;
  • Ryzhov, V.A. (National Research Centre "Kurchatov Institute") ;
  • Bogachev, Yu.V. (Saint Petersburg Electrotechnical University "LETI") ;
  • Klimenkov, B.D. (Saint Petersburg Electrotechnical University "LETI") ;
  • Kononova, I.E. (Saint Petersburg Electrotechnical University "LETI") ;
  • Moshnikov, V.A. (Saint Petersburg Electrotechnical University "LETI")
  • Received : 2015.05.02
  • Accepted : 2015.08.24
  • Published : 2015.09.30

Abstract

Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

Acknowledgement

Supported by : RFBR

References

  1. C. Sun, J. S. H. Lee, and M. Q. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018
  2. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012
  3. R. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, and M. Uhlen, Clinical Microbiology Reviews 7, 43 (1994). https://doi.org/10.1128/CMR.7.1.43
  4. M. N. Widjojoatmodjo, A. C. Fluit, R. Torensma, and J. Verhoef, Journal of Immunological Methods 165, 11 (1993). https://doi.org/10.1016/0022-1759(93)90101-C
  5. N. Kawai, D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi, and K. Kohri, Vascular Cell 6, 15 (2014). https://doi.org/10.1186/2045-824X-6-15
  6. I. S. Smolkova, N. E. Kazantseva, K. N. Makoveckaya, P. Smolka, P. Saha, and A. M. Granov, Materials Science and Engineering C 48, 632-641 (2015). https://doi.org/10.1016/j.msec.2014.12.046
  7. S. Y. Choi, B. K. Kwak, H. J. Shim, J. Lee, S. U. Hong, and K. A. Kim, Diagnostic and Interventional Radiology 21, 47 (2015). https://doi.org/10.5152/dir.2014.14015
  8. K.-H. Lee, E. Liapi, J. A. Vossen, M. Buijs, V. P. Ventura, C. Georgiades, K. Hong, I. Kamel, M. S. Torbenson, and J.-F. H. Geschwind, J. Vasc. Interv. Radiol. 19, 1490 (2008). https://doi.org/10.1016/j.jvir.2008.06.008
  9. S. Y. Gan and M. Chow, Journal of Materials Chemistry 14, 2781 (2004). https://doi.org/10.1039/b404964k
  10. A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, Biosensors and Bioelectronics 24, 676 (2008). https://doi.org/10.1016/j.bios.2008.06.032
  11. J. Sun, S. B. Zhou, P. Hou, Y. Yang, J. Weng, X. H. Li, and M. Y. Li, Journal of Biomedical Materials Research 80A, 333 (2006).
  12. M. D. Butterworth, L. Illum, and S. S. Davis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 179, 93 (2001). https://doi.org/10.1016/S0927-7757(00)00633-6
  13. Q. Xu, X. J. Bian, L. L. Li, X. Y. Hu, M. Sun, D. Chen, and Y. Wang, Electrochemistry Communications 10, 995 (2008). https://doi.org/10.1016/j.elecom.2007.12.002
  14. L. Neel and C. R. Hebd, Seances Acad. Sci. 228, 664 (1949)
  15. Ann. Geophys. (C.N.R.S.) 5, 99 (1949).
  16. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120 (1959). https://doi.org/10.1063/1.2185850
  17. B. D. Gullity and C. D. Graham, Introduction to Magnetic Materials, IEEE Press, WILEY (2009) p. 383.
  18. S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009). https://doi.org/10.1088/0022-3727/42/1/013001
  19. J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C 21, 2015 (1988). https://doi.org/10.1088/0022-3719/21/10/019
  20. S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, IEEE Trans. Magn. 29, 2619 (1993). https://doi.org/10.1109/20.280847
  21. R. W. Chantrell, In: Magnetic Hysteresis in Novel Magnetic Materials, by ed. G. C. Hadjipanayis, NATO Advanced Study Institute, Series E: Applied Sciences, vol. 338, Kluwer, Dordrecht (1997) p. 21.
  22. R. W. Chantrell, M. El-Hilo, and K. O'Grady, IEEE Trans. Magn. 27, 3570 (1991). https://doi.org/10.1109/20.102929
  23. M. El-Hilo, K. O'Grady, and R. W. Chantrell, J. Magn. Magn. Mater. 114, 295 (1992). https://doi.org/10.1016/0304-8853(92)90272-P
  24. K. O'Grady, M El-Hilo, and R. W. Chantrell, IEEE Trans. Magn. 29, 2608 (1993). https://doi.org/10.1109/20.280850
  25. W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991). https://doi.org/10.1103/PhysRevLett.67.2721
  26. S. Morup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994). https://doi.org/10.1103/PhysRevLett.72.3278
  27. S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B 52, 287 (1995). https://doi.org/10.1103/PhysRevB.52.287
  28. Yu. V. Bogachev, K. G. Gareev, L. B. Matyushkin, V. A. Moshnokov, and A. N. Naumova, Phys. of the Sol. St. 55, 2313 (2013).
  29. R. Massart. IEEE Trans. Magn. 17, 1247 (1981). https://doi.org/10.1109/TMAG.1981.1061188
  30. I. E. Kononova, K. G. Gareev, V. A. Moshnikov, V. I. Al'myashev, and O. V. Kucherova, Inorganic Materials 50, 68 (2014). https://doi.org/10.1134/S0020168514010117
  31. V. I. Al'myashev, K. G. Gareev, S. A. Ionin, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Physics of the Solid State 56, 2155 (2014). https://doi.org/10.1134/S1063783414110031
  32. V. A. Ryzhov, I. I. Larionov, and V. N. Fomichev. Zh. Tekh. Fiz. 66, 183 (1996) [Tech. Phys. 41, 620 (1996)]
  33. V. A. Ryzhov, and E. I. Zavatskii, Patent No 2507525, registered in Russia 20.02.2014.
  34. Yu. V. Bogachev, Ju. S. Chernenco, K. G. Gareev, I. E. Kononova, L. B. Matyushkin, V. A. Moshnikov, and S. S. Nalimova, Appl. Magn. Reson. 45, 329 (2014). https://doi.org/10.1007/s00723-014-0525-7
  35. D. Shaw. Introduction to Colloid and Surface Chemistry. Elsevier (1992) p. 320.
  36. I. E. Gracheva, G. Olchowik, K. G. Gareev, V. A. Moshnikov, V. V. Kuznetsov, and J. M. Olchowik, J. Phys. Chem. Sol. 74, 656 (2013). https://doi.org/10.1016/j.jpcs.2012.12.021
  37. I. E. Gracheva, V. A. Moshnikov, and K. G. Gareev, Glass Phys. Chem. 39, 311 (2013). https://doi.org/10.1134/S1087659613030097
  38. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959
  39. L. R. Bickford, J. M. Brownlow, and F. R. Penoyer, Proc. IEEE 104, 238 (1957).
  40. F. Bodker, S. Mørup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994). https://doi.org/10.1103/PhysRevLett.72.282
  41. V. A. Ryzhov, I. V. Pleshakov, A. A. Nechitailov, N. V. Glebova, E. N. Pyatyshev, A. V. Malkova, I. A. Kisilev, and V. V. Matveev, Appl. Magn. Reson. 46, 339 (2014).
  42. P. V. Kharitonskii, A. M. Frolov, S. A. Boev, V. S. Rudnev, I. A. Tkachenko, V. P. Morozova, I. V. Lukiyanchuk, M. V. Adigamova, and A. Yu. Ustinov, Sol. St. Phen. 215, 200 (2014). https://doi.org/10.4028/www.scientific.net/SSP.215.200

Cited by

  1. Mössbauer studies on cation distributions and superexchange interactions in Cu0.2Fe2.8O4 vol.68, pp.3, 2016, https://doi.org/10.3938/jkps.68.403
  2. Aggregate stability and magnetic characteristics of colloidal Fe m O n –SiO2 particles obtained by sol–gel method vol.59, pp.5, 2017, https://doi.org/10.1134/S1063783417050304