Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V. (Saint Petersburg Electrotechnical University "LETI") ;
  • Gareev, K.G. (Saint Petersburg Electrotechnical University "LETI") ;
  • Ionin, S.A. (Saint Petersburg Electrotechnical University "LETI") ;
  • Ryzhov, V.A. (National Research Centre "Kurchatov Institute") ;
  • Bogachev, Yu.V. (Saint Petersburg Electrotechnical University "LETI") ;
  • Klimenkov, B.D. (Saint Petersburg Electrotechnical University "LETI") ;
  • Kononova, I.E. (Saint Petersburg Electrotechnical University "LETI") ;
  • Moshnikov, V.A. (Saint Petersburg Electrotechnical University "LETI")
  • Received : 2015.05.02
  • Accepted : 2015.08.24
  • Published : 2015.09.30


Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.



Supported by : RFBR


  1. C. Sun, J. S. H. Lee, and M. Q. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008).
  2. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005).
  3. R. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, and M. Uhlen, Clinical Microbiology Reviews 7, 43 (1994).
  4. M. N. Widjojoatmodjo, A. C. Fluit, R. Torensma, and J. Verhoef, Journal of Immunological Methods 165, 11 (1993).
  5. N. Kawai, D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi, and K. Kohri, Vascular Cell 6, 15 (2014).
  6. I. S. Smolkova, N. E. Kazantseva, K. N. Makoveckaya, P. Smolka, P. Saha, and A. M. Granov, Materials Science and Engineering C 48, 632-641 (2015).
  7. S. Y. Choi, B. K. Kwak, H. J. Shim, J. Lee, S. U. Hong, and K. A. Kim, Diagnostic and Interventional Radiology 21, 47 (2015).
  8. K.-H. Lee, E. Liapi, J. A. Vossen, M. Buijs, V. P. Ventura, C. Georgiades, K. Hong, I. Kamel, M. S. Torbenson, and J.-F. H. Geschwind, J. Vasc. Interv. Radiol. 19, 1490 (2008).
  9. S. Y. Gan and M. Chow, Journal of Materials Chemistry 14, 2781 (2004).
  10. A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, Biosensors and Bioelectronics 24, 676 (2008).
  11. J. Sun, S. B. Zhou, P. Hou, Y. Yang, J. Weng, X. H. Li, and M. Y. Li, Journal of Biomedical Materials Research 80A, 333 (2006).
  12. M. D. Butterworth, L. Illum, and S. S. Davis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 179, 93 (2001).
  13. Q. Xu, X. J. Bian, L. L. Li, X. Y. Hu, M. Sun, D. Chen, and Y. Wang, Electrochemistry Communications 10, 995 (2008).
  14. L. Neel and C. R. Hebd, Seances Acad. Sci. 228, 664 (1949)
  15. Ann. Geophys. (C.N.R.S.) 5, 99 (1949).
  16. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120 (1959).
  17. B. D. Gullity and C. D. Graham, Introduction to Magnetic Materials, IEEE Press, WILEY (2009) p. 383.
  18. S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009).
  19. J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C 21, 2015 (1988).
  20. S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, IEEE Trans. Magn. 29, 2619 (1993).
  21. R. W. Chantrell, In: Magnetic Hysteresis in Novel Magnetic Materials, by ed. G. C. Hadjipanayis, NATO Advanced Study Institute, Series E: Applied Sciences, vol. 338, Kluwer, Dordrecht (1997) p. 21.
  22. R. W. Chantrell, M. El-Hilo, and K. O'Grady, IEEE Trans. Magn. 27, 3570 (1991).
  23. M. El-Hilo, K. O'Grady, and R. W. Chantrell, J. Magn. Magn. Mater. 114, 295 (1992).
  24. K. O'Grady, M El-Hilo, and R. W. Chantrell, IEEE Trans. Magn. 29, 2608 (1993).
  25. W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991).
  26. S. Morup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994).
  27. S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B 52, 287 (1995).
  28. Yu. V. Bogachev, K. G. Gareev, L. B. Matyushkin, V. A. Moshnokov, and A. N. Naumova, Phys. of the Sol. St. 55, 2313 (2013).
  29. R. Massart. IEEE Trans. Magn. 17, 1247 (1981).
  30. I. E. Kononova, K. G. Gareev, V. A. Moshnikov, V. I. Al'myashev, and O. V. Kucherova, Inorganic Materials 50, 68 (2014).
  31. V. I. Al'myashev, K. G. Gareev, S. A. Ionin, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Physics of the Solid State 56, 2155 (2014).
  32. V. A. Ryzhov, I. I. Larionov, and V. N. Fomichev. Zh. Tekh. Fiz. 66, 183 (1996) [Tech. Phys. 41, 620 (1996)]
  33. V. A. Ryzhov, and E. I. Zavatskii, Patent No 2507525, registered in Russia 20.02.2014.
  34. Yu. V. Bogachev, Ju. S. Chernenco, K. G. Gareev, I. E. Kononova, L. B. Matyushkin, V. A. Moshnikov, and S. S. Nalimova, Appl. Magn. Reson. 45, 329 (2014).
  35. D. Shaw. Introduction to Colloid and Surface Chemistry. Elsevier (1992) p. 320.
  36. I. E. Gracheva, G. Olchowik, K. G. Gareev, V. A. Moshnikov, V. V. Kuznetsov, and J. M. Olchowik, J. Phys. Chem. Sol. 74, 656 (2013).
  37. I. E. Gracheva, V. A. Moshnikov, and K. G. Gareev, Glass Phys. Chem. 39, 311 (2013).
  38. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003).
  39. L. R. Bickford, J. M. Brownlow, and F. R. Penoyer, Proc. IEEE 104, 238 (1957).
  40. F. Bodker, S. Mørup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994).
  41. V. A. Ryzhov, I. V. Pleshakov, A. A. Nechitailov, N. V. Glebova, E. N. Pyatyshev, A. V. Malkova, I. A. Kisilev, and V. V. Matveev, Appl. Magn. Reson. 46, 339 (2014).
  42. P. V. Kharitonskii, A. M. Frolov, S. A. Boev, V. S. Rudnev, I. A. Tkachenko, V. P. Morozova, I. V. Lukiyanchuk, M. V. Adigamova, and A. Yu. Ustinov, Sol. St. Phen. 215, 200 (2014).

Cited by

  1. Mössbauer studies on cation distributions and superexchange interactions in Cu0.2Fe2.8O4 vol.68, pp.3, 2016,
  2. Aggregate stability and magnetic characteristics of colloidal Fe m O n –SiO2 particles obtained by sol–gel method vol.59, pp.5, 2017,