DOI QR코드

DOI QR Code

Microstructure and Magnetic State of Fe3O4-SiO2 Colloidal Particles

  • Kharitonskii, P.V. ;
  • Gareev, K.G. ;
  • Ionin, S.A. ;
  • Ryzhov, V.A. ;
  • Bogachev, Yu.V. ;
  • Klimenkov, B.D. ;
  • Kononova, I.E. ;
  • Moshnikov, V.A.
  • Received : 2015.05.02
  • Accepted : 2015.08.24
  • Published : 2015.09.30

Abstract

Colloidal particles consisted of individual nanosized magnetite grains on the surface of the silica cores were obtained by two-stage sol-gel technique. Size distribution and microstructure of the particles were analyzed using atomic force microscopy, X-ray diffraction and Nitrogen thermal desorption. Magnetic properties of the particles were studied by the method of the longitudinal nonlinear response. It has been shown that nanoparticles of magnetite have a size corresponding to a superparamagnetic state but exhibit hysteresis properties. The phenomenon was explained using the magnetostatic interaction model based on the hypothesis of iron oxide particles cluster aggregation on the silica surface.

Keywords

magnetite;silica;colloidal particles;superparamagnetism;longitudinal nonlinear response;magnetostatic interaction

References

  1. C. Sun, J. S. H. Lee, and M. Q. Zhang, Advanced Drug Delivery Reviews 60, 1252 (2008). https://doi.org/10.1016/j.addr.2008.03.018
  2. A. K. Gupta and M. Gupta, Biomaterials 26, 3995 (2005). https://doi.org/10.1016/j.biomaterials.2004.10.012
  3. R. Olsvik, T. Popovic, E. Skjerve, K. S. Cudjoe, E. Hornes, J. Ugelstad, and M. Uhlen, Clinical Microbiology Reviews 7, 43 (1994). https://doi.org/10.1128/CMR.7.1.43
  4. M. N. Widjojoatmodjo, A. C. Fluit, R. Torensma, and J. Verhoef, Journal of Immunological Methods 165, 11 (1993). https://doi.org/10.1016/0022-1759(93)90101-C
  5. N. Kawai, D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi, and K. Kohri, Vascular Cell 6, 15 (2014). https://doi.org/10.1186/2045-824X-6-15
  6. I. S. Smolkova, N. E. Kazantseva, K. N. Makoveckaya, P. Smolka, P. Saha, and A. M. Granov, Materials Science and Engineering C 48, 632-641 (2015). https://doi.org/10.1016/j.msec.2014.12.046
  7. S. Y. Choi, B. K. Kwak, H. J. Shim, J. Lee, S. U. Hong, and K. A. Kim, Diagnostic and Interventional Radiology 21, 47 (2015). https://doi.org/10.5152/dir.2014.14015
  8. K.-H. Lee, E. Liapi, J. A. Vossen, M. Buijs, V. P. Ventura, C. Georgiades, K. Hong, I. Kamel, M. S. Torbenson, and J.-F. H. Geschwind, J. Vasc. Interv. Radiol. 19, 1490 (2008). https://doi.org/10.1016/j.jvir.2008.06.008
  9. S. Y. Gan and M. Chow, Journal of Materials Chemistry 14, 2781 (2004). https://doi.org/10.1039/b404964k
  10. A. Kaushik, R. Khan, P. R. Solanki, P. Pandey, J. Alam, S. Ahmad, and B. D. Malhotra, Biosensors and Bioelectronics 24, 676 (2008). https://doi.org/10.1016/j.bios.2008.06.032
  11. J. Sun, S. B. Zhou, P. Hou, Y. Yang, J. Weng, X. H. Li, and M. Y. Li, Journal of Biomedical Materials Research 80A, 333 (2006).
  12. M. D. Butterworth, L. Illum, and S. S. Davis, Colloids and Surfaces A: Physicochemical and Engineering Aspects 179, 93 (2001). https://doi.org/10.1016/S0927-7757(00)00633-6
  13. Q. Xu, X. J. Bian, L. L. Li, X. Y. Hu, M. Sun, D. Chen, and Y. Wang, Electrochemistry Communications 10, 995 (2008). https://doi.org/10.1016/j.elecom.2007.12.002
  14. L. Neel and C. R. Hebd, Seances Acad. Sci. 228, 664 (1949)
  15. C. P. Bean and J. D. Livingston, J. Appl. Phys. 30, 120 (1959). https://doi.org/10.1063/1.2185850
  16. B. D. Gullity and C. D. Graham, Introduction to Magnetic Materials, IEEE Press, WILEY (2009) p. 383.
  17. S. Bedanta and W. Kleemann, J. Phys. D: Appl. Phys. 42, 013001 (2009). https://doi.org/10.1088/0022-3727/42/1/013001
  18. J. L. Dormann, L. Bessais, and D. Fiorani, J. Phys. C 21, 2015 (1988). https://doi.org/10.1088/0022-3719/21/10/019
  19. S. Gangopadhyay, G. C. Hadjipanayis, C. M. Sorensen, and K. J. Klabunde, IEEE Trans. Magn. 29, 2619 (1993). https://doi.org/10.1109/20.280847
  20. R. W. Chantrell, In: Magnetic Hysteresis in Novel Magnetic Materials, by ed. G. C. Hadjipanayis, NATO Advanced Study Institute, Series E: Applied Sciences, vol. 338, Kluwer, Dordrecht (1997) p. 21.
  21. R. W. Chantrell, M. El-Hilo, and K. O'Grady, IEEE Trans. Magn. 27, 3570 (1991). https://doi.org/10.1109/20.102929
  22. M. El-Hilo, K. O'Grady, and R. W. Chantrell, J. Magn. Magn. Mater. 114, 295 (1992). https://doi.org/10.1016/0304-8853(92)90272-P
  23. K. O'Grady, M El-Hilo, and R. W. Chantrell, IEEE Trans. Magn. 29, 2608 (1993). https://doi.org/10.1109/20.280850
  24. W. Luo, S. R. Nagel, T. F. Rosenbaum, and R. E. Rosensweig, Phys. Rev. Lett. 67, 2721 (1991). https://doi.org/10.1103/PhysRevLett.67.2721
  25. S. Morup and E. Tronc, Phys. Rev. Lett. 72, 3278 (1994). https://doi.org/10.1103/PhysRevLett.72.3278
  26. S. Morup, F. Bodker, P. V. Hendriksen, and S. Linderoth, Phys. Rev. B 52, 287 (1995). https://doi.org/10.1103/PhysRevB.52.287
  27. Yu. V. Bogachev, K. G. Gareev, L. B. Matyushkin, V. A. Moshnokov, and A. N. Naumova, Phys. of the Sol. St. 55, 2313 (2013).
  28. R. Massart. IEEE Trans. Magn. 17, 1247 (1981). https://doi.org/10.1109/TMAG.1981.1061188
  29. I. E. Kononova, K. G. Gareev, V. A. Moshnikov, V. I. Al'myashev, and O. V. Kucherova, Inorganic Materials 50, 68 (2014). https://doi.org/10.1134/S0020168514010117
  30. V. I. Al'myashev, K. G. Gareev, S. A. Ionin, V. S. Levitskii, V. A. Moshnikov, and E. I. Terukov, Physics of the Solid State 56, 2155 (2014). https://doi.org/10.1134/S1063783414110031
  31. V. A. Ryzhov, I. I. Larionov, and V. N. Fomichev. Zh. Tekh. Fiz. 66, 183 (1996) [Tech. Phys. 41, 620 (1996)]
  32. Yu. V. Bogachev, Ju. S. Chernenco, K. G. Gareev, I. E. Kononova, L. B. Matyushkin, V. A. Moshnikov, and S. S. Nalimova, Appl. Magn. Reson. 45, 329 (2014). https://doi.org/10.1007/s00723-014-0525-7
  33. D. Shaw. Introduction to Colloid and Surface Chemistry. Elsevier (1992) p. 320.
  34. I. E. Gracheva, G. Olchowik, K. G. Gareev, V. A. Moshnikov, V. V. Kuznetsov, and J. M. Olchowik, J. Phys. Chem. Sol. 74, 656 (2013). https://doi.org/10.1016/j.jpcs.2012.12.021
  35. I. E. Gracheva, V. A. Moshnikov, and K. G. Gareev, Glass Phys. Chem. 39, 311 (2013). https://doi.org/10.1134/S1087659613030097
  36. G. F. Goya, T. S. Berquo, F. C. Fonseca, and M. P. Morales, J. Appl. Phys. 94, 3520 (2003). https://doi.org/10.1063/1.1599959
  37. L. R. Bickford, J. M. Brownlow, and F. R. Penoyer, Proc. IEEE 104, 238 (1957).
  38. F. Bodker, S. Mørup, and S. Linderoth, Phys. Rev. Lett. 72, 282 (1994). https://doi.org/10.1103/PhysRevLett.72.282
  39. V. A. Ryzhov, I. V. Pleshakov, A. A. Nechitailov, N. V. Glebova, E. N. Pyatyshev, A. V. Malkova, I. A. Kisilev, and V. V. Matveev, Appl. Magn. Reson. 46, 339 (2014).
  40. P. V. Kharitonskii, A. M. Frolov, S. A. Boev, V. S. Rudnev, I. A. Tkachenko, V. P. Morozova, I. V. Lukiyanchuk, M. V. Adigamova, and A. Yu. Ustinov, Sol. St. Phen. 215, 200 (2014). https://doi.org/10.4028/www.scientific.net/SSP.215.200
  41. Ann. Geophys. (C.N.R.S.) 5, 99 (1949).
  42. V. A. Ryzhov, and E. I. Zavatskii, Patent No 2507525, registered in Russia 20.02.2014.

Cited by

  1. Mössbauer studies on cation distributions and superexchange interactions in Cu0.2Fe2.8O4 vol.68, pp.3, 2016, https://doi.org/10.3938/jkps.68.403
  2. Aggregate stability and magnetic characteristics of colloidal Fe m O n –SiO2 particles obtained by sol–gel method vol.59, pp.5, 2017, https://doi.org/10.1134/S1063783417050304

Acknowledgement

Supported by : RFBR