Altered Expression of Oxidative Metabolism Related Genes in Cholangiocarcinomas

  • Aukkanimart, Ratchadawan (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Boonmars, Thidarut (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Juasook, Amornrat (Liver Fluke and Cholangiocarcinoma Research Center, Faculty of Medicine, Khon Kaen University) ;
  • Sriraj, Pranee (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Boonjaraspinyo, Sirintip (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Wu, Zhiliang (Department of Parasitology, Graduate School of Medicine, Gifu University) ;
  • Laummuanwai, Porntip (Department of Parasitology, Faculty of Medicine, Khon Kaen University) ;
  • Pairojkul, Chawalit (Department of Pathology, Faculty of Medicine, Khon Kaen University) ;
  • Khuntikeo, Narong (Department of Surgery, Faculty of Medicine, Khon Kaen University) ;
  • Rattanasuwan, Panaratana (Department of Anesthesiology, Faculty of Medicine, Khon Kaen University)
  • Published : 2015.09.02


Cholangiocarcinoma (CCA) is a rare but highly fatal cancer for which the molecular mechanisms and diagnostic markers are obscure. We therefore investigated the kinetic expression of isocitrate dehydrogenase-1 (IDH1), isocitrate dehydrogenase-2 (IDH2) and homogentisate 1,2-dioxygenase (HGD) during the tumorigenesis of O. viverrini infection-associated CCA in an animal model, and confirmed down-regulation of expression in human cases of opisthorchiasis-associated CCA through real time PCR. Kinetic expression of HGD, IDH1 and IDH2 in the animal model of O. viverrini infection-induced CCA was correlated with human CCA cases. In the animal model, expression of HGD was decreased at all time points (p<0.01) and expression of both IDH1 and IDH2 was decreased in the CCA group. In human cases, expression of HGD, IDH1 and IDH2 was decreased more than 2 fold in 55 cases (70.5%), 25 cases (32.1%) and 24 cases (30.8%) respectively. The present study suggests that reduction of HGD, IDH1 and IDH2 may be involve in cholangiocarcinoma genesis and may be useful for molecular diagnosis.


  1. Amary MF, Bacsi K, Maggiani F, et al (2011). IDH1 and IDH2 mutations are frequent events in central chondrosarcoma and central and periosteal chondromas but not in other mesenchymal tumours. J Pathol, 224, 334-43.
  2. Al-sbou M (2012). Novel mutations in the homogentisate 1,2 dioxygenase gene identified in Jordanian patients with alkaptonuria. Rheumatol Int, 32, 1741-6.
  3. Boonjaraspinyo S, Wu Z, Boonmars T, et al (2012). Overexpression of PDGFA and its receptor during carcinogenesis of Opisthorchis viverrini associated cholangiocarcinoma. Parasitol Int, 61, 145-50.
  4. Boonmars T, Srirach P, Kaewsamut B, et al (2008). Apoptosisrelated gene expression in hamster opisthorchiasis post praziquantel treatment. Parasitol Res, 102, 447-55.
  5. Boonmars T, Boonjaraspinyo S, Kaewsamut B (2009a). Animal models for Opisthorchis viverrini infection. Parasitol Res, 104, 701-3.
  6. Boonmars T, Wu Z, Boonjaruspinyo S, et al (2009b). Alterations of gene expression of RB pathway in Opisthorchis viverrini infection-induced cholangiocarcinoma. Parasitol Res, 105, 1273-81.
  7. Boonmars T, Wu Z, Boonjaruspinyo S, et al (2011). Involvement of c-Ski oncoprotein in carcinogenesis of cholangiocacinoma induced by Opisthorchis viverrini and N-nitrosodimethylamine. Pathol Oncol Res, 17, 219-27.
  8. Borger DR, Tanabe KK, Fan KC, et al (2012). Frequent mutation of isocitrate dehydrogenase (IDH) 1 and IDH 2 in cholangiocarcinoma identified through broad-based tumor genotyping. Oncologist, 17, 72-9.
  9. Chelikani P, Fita I, Loewen PC (2004). Diversity of structures and properties among catalases. Cell Mol Life Sci, 61, 192-208.
  10. Chan-On W, Nairismagi ML, Ong CK, et al (2013). Exome sequencing identifies distinct mutational patterns in liver fluke-related and non- infection-related bile duct cancers. Nat Genet, 45, 1474-8.
  11. Dang L, Jin S, Su SM (2010). IDH mutations in glioma and acute myeloid leukemia. Trends Mol Med, 16, 387-97.
  12. Hayes JD, Flanagan JU, Jowsey IR (2005). Glutathione transferases. Annu Rev Pharmacol Toxicol, 45, 51-88.
  13. Hartmann C, Meyer J, Balss J, et al (2009). Type and frequency of IDH1 and IDH2 mutations are related to astrocytic and oligodendroglial differentiation and age: a study of 1,010 diffuse gliomas. Acta Neuropathol, 118, 469-74.
  14. IARC (1994). Infection with liver flukes (Opisthorchis viverrini, Opisthorchis felineus and Clonorchis sinensis). IARC Monogr Eval Carcinog Risks Hum, 61, 121-75.
  15. IARC (2011). A Review of Human Carcinogens Part B: Biological Agents (Opisthorchis viverrini and Clonorchis sinensis). IARC Monogr Eval Carcinog Risks Hum, 100, 347-76.
  16. Jiao Y, Pawlik TM, Anders RA, et al (2013). Exome sequencing identifies frequent inactivating mutations in BAP1, ARID1A and PBRM1 in intrahepatic cholangiocarcinomas. Nat Genet, 45, 1470-3.
  17. Jongsuksuntigul P, Imsomboon T (2003). Opisthorchiasis control in Thailand. Acta Trop, 88, 229-32.
  18. Joseph JW, Jensen MV, Ilkayeva O, et al (2006). The mitochondrial citrate/isocitrate carrier plays a regulatory role in glucose-stimulated insulin secretion. J Biol Chem, 24, 35624-32.
  19. Kang MR, Kim MS, Oh JE, et al (2009). Mutational analysis of IDH1 codon 132 in glioblastomas and other common cancers. Int J Cancer, 15, 353-5.
  20. Kawanishi S, Hiraku Y (2006). Oxidative and nitrative DNA damage as biomarker for carcinogenesis with special reference to inflammation. Antioxid Redox Signal, 8, 1047-58
  21. Kim W, Liau LM (2012). IDH Mutations in human glioma. Neurosurg Clin N Am, 23, 471-80.
  22. McCord JM, Fridovich I (1969). Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J Biol Chem, 25, 6049-55.
  23. Miki H, Funato Y (2012). Regulation of intracellular signalling through cysteine oxidation by reactive oxygen species. J Biochem, 151, 255-61.
  24. Minard KI, McAlister-Henn L (1999). Dependence of peroxisomal beta-oxidation on cytosolic sources of NADPH. J Biol Chem, 5, 3402-6.
  25. Pinlaor S, Hiraku Y, Ma N, et al (2004b). Mechanism of NO-mediated oxidative and nitrative DNA damage in hamsters infected with Opisthorchis viverrini: a model of inflammation-mediated carcinogenesis. Nitric Oxide, 11, 175-83.
  26. Pinlaor S, Ma N, Hiraku Y, et al (2004a). Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7, 8-dihydro-2'-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis, 25, 1535- 42.
  27. Qi ST, Yu L, Lu YT, et al (2011). IDH mutations occur frequently in Chinese glioma patients and predict longer survival but not response to concomitant chemoradiotherapy in anaplastic gliomas. Oncol Rep, 26, 1479-85.
  28. Raza H (2011). Dual localization of glutathione S-transferase in the cytosol and mitochondria: implications in oxidative stress, toxicity and disease. FEBS J, 278, 4243-51.
  29. Reitman ZJ, Yan H (2011). Isocitrate dehydrogenase 1 and 2 mutations in cancer: alterations at a crossroads of cellular metabolism. J Natl Cancer Inst, 7, 932-41.
  30. Sithithaworn P, Haswell-Elkins M (2003). Epidemiology of Opisthorchis viverrini. Acta Trop, 88,187-94.
  31. Sriamporn S, Pisani P, Pipitgool V, et al (2004). Prevalence of Opisthorchis viverrini infection and incidence of cholangiocarcinoma in Khon Kaen, Northeast Thailand. Trop Med Int Health, 9, 588-94.
  32. Srianujata S, Tonbuth S, Bunyaratvej S, et al (1984). High urinary excretion of nitrate and N-nitrosoproline in opisthorchiasis subjects. IARC Sci Publ, 84, 544-6.
  33. Sripa B, Pairojkul C (2008). Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol, 24, 349-56.
  34. Srivatanakul P, Ohshima H, Khlat M, et al (1991). Opisthorchis viverrini infestation and endogenous nitrosamines as risk factors cholangiocarcinoma in Thailand. Int J Cancer, 30, 821-5.
  35. Sazanov LA, Jackson JB (1994). Proton-translocating transhydrogenase and NAD- and NADP-linked isocitrate dehydrogenases operate in a substrate cycle which contributes to fine regulation of the tricarboxylic acid cycle activity in mitochondria. FEBS Lett, 16, 109-16.
  36. Sjoblom T, Jones S, Wood LD, et al (2006). The consensus coding sequences of human breast and colorectal cancers. Science, 13, 268-74.
  37. SongTao Q, Lei Y, Si G, et al (2012). IDH mutations predict longer survival and response to temozolomide in secondary glioblastoma. Cancer Sci, 103, 269-73.
  38. Thamavit W, Bhamarapravati N, Sahaphong S, et al (1987). Effects of dimethylnitrosamine on induction of cholangiocarcinoma in Opisthorchis viverrini-infected Syrian golden hamsters. Cancer Res, 38, 4634-63.
  39. Thamavit W, Pairojkul C, Tiwawech D, et al (1993). Promotion of cholangiocarcinogenesis in the hamster liver by bile duct ligation after dimethylnitrosamine initiation. Carcinogenesis, 14, 2415-7.
  40. Valko M, Leibfritz D, Moncol J, et al (2007). Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol, 39, 44-84.
  41. Wu Z, Boonmars T, Boonjaraspinyo S, et al (2011). Candidate genes involving in tumorigenesis of cholangiocarcinoma induced by Opisthorchis viverrini infection. Parasitol Res, 109, 657-73.
  42. Yan H, Parsons DW, Jin G, et al (2009). IDH1 and IDH2 mutations in gliomas. N Engl J Med, 19, 765-73