Hep88 mAb-Mediated Paraptosis-Like Apoptosis in HepG2 Cells via Downstream Upregulation and Activation of Caspase-3, Caspase-8 and Caspase-9

  • Mitupatum, Thantip (Faculty of Medicine, Thammasat University (Rangsit Campus)) ;
  • Aree, Kalaya (Faculty of Medicine, Thammasat University (Rangsit Campus)) ;
  • Kittisenachai, Suthathip (Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park) ;
  • Roytrakul, Sittiruk (Thailand National Center for Genetic Engineering and Biotechnology (BIOTEC), Thailand Science Park) ;
  • Puthong, Songchan (Antibody Production Research Unit, Institute of Biotechnology and Genetic Engineering, Chulalongkorn University) ;
  • Kangsadalampai, Sasichai (Faculty of Medicine, Thammasat University (Rangsit Campus)) ;
  • Rojpibulstit, Panadda (Faculty of Medicine, Thammasat University (Rangsit Campus))
  • Published : 2015.03.18


Hepatocellular carcinoma (HCC) is a leading cause of cancer death worldwide. Presently, targeted therapy via monoclonal antibodies to specific tumor-associated antigens is being continuously developed. Hep88 mAb has proven to exert tumoricidal effects on the HepG2 cell via a paraptosis-like morphology. To verify the pathway, we then demonstrated downstream up-regulation of caspase-3, caspase-8 and caspase-9, assessingmRNA expression by real-time PCR and associated enzyme activity by colorimetric assay. Active caspase-3 determination was also accomplished by flow cytometry. Active caspase-3 expression was increased by Hep88 mAb treatment in a dose-and time-dependent manner. All of the results indicated that Hep88 mAb induced programmed cell death in the HepG2 cell line from paraptosis-like to apoptosis by downstream induction of caspases. These conclusions imply that Hep88mAb might be a promising tool for the effective treatment of HCC in the future.


Hepatocellular carcinoma;Hep88 monoclonal antibody;paraptosis;caspase


Supported by : Thammasat University


  1. Al-Fatlawi AA, Al-Fatlawi AA, Irshad M, et al (2014). Rice bran phytic acid induced apoptosis through regulation of Bcl-2/Bax and p53 genes in HepG2 human hepatocellular carcinoma cells. Asian Pac J Cancer Prev, 15, 3731-6.
  2. Beere HM (2004). "The stress of dying": the role of heat shock proteins in the regulation of apoptosis. J Cell Sci, 117, 2641-51.
  3. Bursch W (2001). The autophagosomal-lysosomal compartment in programmed cell death. Cell Death Differ, 8, 569-81.
  4. Cande C, Cohen I, Daugas E, et al (2002). Apoptosis-inducing factor (AIF): a novel caspase-independent death effector released from mitochondria. Biochimie, 84, 215-22.
  5. Cho S, Lee JH, Cho SB, et al (2010). Epigenetic methylation and expression of caspase 8 and survivin in hepatocellular carcinoma. Pathol Int, 60, 203-11.
  6. Chua CW, Choo SP (2011). Targeted therapy in hepatocellular carcinoma. Int J Hepatol, 2011, 348297.
  7. Ciocca DR, Calderwood SK (2005). Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 10, 86-103.
  8. Daugaard M, Rohde M, Jaattela M (2007). The heat shock protein 70 family: Highly homologous proteins with overlapping and distinct functions. FEBS Lett, 581, 3702-10.
  9. Del Puerto HL, Martins AS, Moro L, et al (2010). Caspase-3/-8/-9, Bax and Bcl-2 expression in the cerebellum, lymph nodes and leukocytes of dogs naturally infected with canine distemper virus. Genet Mol Res, 9, 151-61.
  10. Deocaris CC, Widodo N, Ishii T, et al (2007). Functional significance of minor structural and expression changes in stress chaperone mortalin. Ann N Y Acad Sci, 1119, 165-75.
  11. Ferlay J, Shin HR, Bray F, et al (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer, 127, 2893-917.
  12. Garrido C, Gurbuxani S, Ravagnan L, et al (2001). Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun, 286, 433-42.
  13. Guo WJ, Chen TS, Wang XP, et al (2010). Taxol induces concentration-dependent apoptotic and paraptosis-like cell death in human lung adenocarcinoma (ASTC-a-1) cells. J Xray Sci Technol, 18, 293-308.
  14. Gupta RK, Banerjee A, Pathak S, et al (2013). Induction of mitochondrial-mediated apoptosis by Morinda citrifolia (Noni) in human cervical cancer cells. Asian Pac J Cancer Prev, 14, 237-42.
  15. Gupta S, Kass GE, Szegezdi E, et al (2009). The mitochondrial death pathway: a promising therapeutic target in diseases. J Cell Mol Med, 13, 1004-33.
  16. Ho M (2011). Advances in liver cancer antibody therapies: a focus on glypican-3 and mesothelin. BioDrugs, 25, 275-84.
  17. Jia ZQ, Chen Y, Yan YX, et al (2014). Iso-suillin isolated from Suillus luteus, induces G1 phase arrest and apoptosis in human hepatoma SMMC-7721 cells. Asian Pac J Cancer Prev, 15, 1423-8.
  18. Jiang L, Liu M, Li Y, et al (2014). Abstract 1559: TTC36, a novel chaperone of heat shock protein 70, functions as a tumor suppressor in hepatocellular carcinoma. Cancer Res, 74, 1559.
  19. Kaul SC, Deocaris CC, Wadhwa R (2007). Three faces of mortalin: a housekeeper, guardian and killer. Exp Gerontol, 42, 263-74.
  20. Laohathai K, Bhamarapravati N (1985). Culturing of human hepatocellular carcinoma. A simple and reproducible method. Am J Pathol, 118, 203-8.
  21. Leist M, Jaattela M (2001). Four deaths and a funeral: from caspases to alternative mechanisms. Nat Rev Mol Cell Biol, 2, 589-98.
  22. Li B, Zhao J, Wang CZ, et al (2011). Ginsenoside Rh2 induces apoptosis and paraptosis-like cell death in colorectal cancer cells through activation of p53. Cancer Lett, 301, 185-92.
  23. Li GN, Wang SP, Xue X, et al (2013). Monoclonal antibodyrelated drugs for cancer therapy. Drug Discov Ther, 7, 178-84.
  24. Lu WJ, Lee NP, Kaul SC, et al (2011). Mortalin-p53 interaction in cancer cells is stress dependent and constitutes a selective target for cancer therapy. Cell Death Differ, 18, 1046-56.
  25. Ma Z, Izumi H, Kanai M, et al (2006). Mortalin controls centrosome duplication via modulating centrosomal localization of p53. Oncogene, 25, 5377-90.
  26. Manochantr S, Puthong S, Gamnarai P, et al (2011). Hep 88 mAB induced ultrastructural alteration through apoptosis like program cell death in hepatocellular carcinoma. J Med Assoc Thai, 94, 109-16.
  27. Norberg E, Orrenius S, Zhivotovsky B (2010). Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun, 396, 95-100.
  28. Osaki Y, Nishikawa H (2014). Treatment for hepatocellular carcinoma in Japan over the last three decades: Our experience and published work review. Hepatol Res.
  29. Pfaffl MW, Hageleit M (2001). Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnology Letters, 23, 275-82.
  30. Puthong S, Rojpibulstit P, Buakeaw A (2009). Cytotoxic effect of Hep88 mAb: a novel monoclonal antibody against hepatocellular carcinoma. Thammasat Int J Sc Tech, 14, 95-104.
  31. Qu M, Zhou Z, Chen C, et al (2012). Inhibition of mitochondrial permeability transition pore opening is involved in the protective effects of mortalin overexpression against betaamyloid- induced apoptosis in SH-SY5Y cells. Neurosci Res, 72, 94-102.
  32. Ravagnan L, Gurbuxani S, Susin SA, et al (2001). Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol, 3, 839-43.
  33. Rohde M, Daugaard M, Jensen MH, et al (2005). Members of the heat-shock protein 70 family promote cancer cell growth by distinct mechanisms. Genes Dev, 19, 570-82.
  34. Rojpibulstit P, Kittisenachai S, Puthong S, et al (2014). Hep88 mAb-initiated paraptosis-like PCD pathway in hepatocellular carcinoma cell line through the binding of mortalin (HSPA9) and alpha-enolase. Cancer Cell Int, 14, 69-78.
  35. Ruchalski K, Mao H, Li Z, et al (2006). Distinct hsp70 domains mediate apoptosis-inducing factor release and nuclear accumulation. J Biol Chem, 281, 7873-80.
  36. Sabirzhanov B, Stoica BA, Hanscom M, et al (2012). Overexpression of HSP70 attenuates caspase-dependent and caspase-independent pathways and inhibits neuronal apoptosis. J Neurochem, 123, 542-54.
  37. Selim ME, Hendi AA (2012). Gold nanoparticles induce apoptosis in MCF-7 human breast cancer cells. Asian Pac J Cancer Prev, 13, 1617-20.
  38. Somboon K, Siramolpiwat S, Vilaichone RK (2014). Epidemiology and survival of hepatocellular carcinoma in the central region of Thailand. Asian Pac J Cancer Prev, 15, 3567-70.
  39. Sperandio S, de Belle I, Bredesen DE (2000). An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci U S A, 97, 14376-81.
  40. Sreedhar AS, Csermely P (2004). Heat shock proteins in the regulation of apoptosis: new strategies in tumor therapy: a comprehensive review. Pharmacol Ther, 101, 227-57.
  41. Unal-Cevik I, Kilinc M, Can A, et al (2004). Apoptotic and necrotic death mechanisms are concomitantly activated in the same cell after cerebral ischemia. Stroke, 35, 2189-94.
  42. Wadhwa R, Taira K, Kaul SC (2002). An Hsp70 family chaperone, mortalin/mthsp70/PBP74/Grp75: what, when, and where? Cell Stress Chaperones, 7, 309-16.<0309:AHFCMM>2.0.CO;2
  43. Wadhwa R, Takano S, Kaur K, et al (2006). Upregulation of mortalin/mthsp70/Grp75 contributes to human carcinogenesis. Int J Cancer, 118, 2973-80.
  44. Wyllie AH, Golstein P (2001). More than one way to go. Proc Natl Acad Sci USA, 98, 11-3.
  45. Yang JD, Roberts LR (2010a). Epidemiology and management of hepatocellular carcinoma. Infect Dis Clin North Am, 24, 899-919.
  46. Yang JD, Roberts LR (2010b). Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol, 7, 448-58.
  47. Yu J, Zhou X, He X, et al (2011). Curcumin induces apoptosis involving bax/bcl-2 in human hepatoma SMMC-7721 cells. Asian Pac J Cancer Prev, 12, 1925-9.
  48. Zhu Q, Xu YM, Wang LF, et al (2009). Heat shock protein 70 silencing enhances apoptosis inducing factor-mediated cell death in hepatocellular carcinoma HepG2 cells. Cancer Biol Ther, 8, 792-8.

Cited by

  1. Significance of Rumex Vesicarius as Anticancer Remedy Against Hepatocellular Carcinoma: a Proposal-Based on Experimental Animal Studies vol.16, pp.10, 2015,
  2. Phytochemical Analysis and Anti-cancer Investigation of Boswellia Serrata Bioactive Constituents In Vitro vol.16, pp.16, 2015,
  3. mRNA Expression of Bax, Bcl-2, p53, Cathepsin B, Caspase-3 and Caspase-9 in the HepG2 Cell Line Following Induction by a Novel Monoclonal Ab Hep88 mAb: Cross-Talk for Paraptosis and Apoptosis vol.17, pp.2, 2016,