Clinical Efficacy and Possible Applications of Genomics in Lung Cancer

  • Alharbi, Khalid Khalaf (Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University)
  • Published : 2015.03.18


The heterogeneous nature of lung cancer has become increasingly apparent since introduction of molecular classification. In general, advanced lung cancer is an aggressive malignancy with a poor prognosis. Activating alterations in several potential driver oncogenic genes have been identified, including EGFR, ROS1 and ALK and understanding of their molecular mechanisms underlying development, progression, and survival of lung cancer has led to the design of personalized treatments that have produced superior clinical outcomes in tumours harbouring these mutations. In light of the tsunami of new biomarkers and targeted agents, next generation sequencing testing strategies will be more appropriate in identifying the patients for each therapy and enabling personalized patients care. The challenge now is how best to interpret the results of these genomic tests, in the context of other clinical data, to optimize treatment choices. In genomic era of cancer treatment, the traditional one-size-fits-all paradigm is being replaced with more effective, personalized oncologic care. This review provides an overview of lung cancer genomics and personalized treatment.


Lung cancer;genomics;personalized treatment


  1. Abdulkareem IH, Blair M (2013). Phosphatase and tensin homologue deleted on chromosome 10. Niger Med J, 54, 79-86.
  2. Brian E, Henderson, Norman H, Lee, Victoria Seewaldt, Hongbing Shen (2012). The influence of race and ethnicity on the biology of cancer. Nature Reviews Cancer, 12, 648-53.
  3. Bergethon K, Shaw AT, Ou SH, et al (2012). ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 30, 863-70.
  4. Bergethon K, Shaw AT, Ou SH, et al (2012). ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol, 30, 863-70.
  5. Bell DW (2010). Our changing view of the genomic landscape of cancer. J Pathol, 220, 231-43.
  6. Campbell PJ, Yachida S, Mudie LJ, et al (2010). The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature, 467, 1109-13.
  7. Chaft JE, Arcila ME, Paik PK, et al (2012). Coexistence of PIK3CA and other oncogene mutations in lung adenocarcinoma: rationale for comprehensive mutation profiling. Mol Cancer Ther, 11, 485-91.
  8. Ding L, Wendl MC, Koboldt DC, Mardis ER (2010). Analysis of next-generation genomic data in cancer: accomplishments and challenges. Hum Mol Genet, 19, 188-96.
  9. Ding L, Ellis MJ, Li S, et al (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464, 999-1005.
  10. DeSantis C, Virgo K, et al (2012). Cancer treatment and survivorship statistics, 2012. CA Cancer J Clin, 62, 220-41
  11. Ding L, Getz G, Wheeler DA, et al (2008). Somatic mutations affect key pathways in lung adenocarcinoma. Nature, 455, 1069-75.
  12. Engelman JA, Zejnullahu K, Gale CM, et al (2007). PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res, 67, 11924-32.
  13. Field JK, Brambilla C, Caporaso N, et al (2002). Consensus statements from the second international lung cancer molecular biomarkers workshop: a European strategy for developing lung cancer molecular diagnostics in high risk populations. Int J Oncol, 21, 369-73.
  14. Gandara DR, Mack PC, Li T, et al (2009). Evolving treatment algorithms for advanced non-small-cell lung cancer: 2009 looking toward 2012. Clin Lung Cancer, 10, 392-4.
  15. Gandara DR, Li T, Lara PN, Jr, et al (2012). Algorithm for codevelopment of new drug-predictive biomarker combinations: Accounting for inter- and intrapatient tumor heterogeneity. Clin Lung Cancer, 13, 321-5.
  16. Gonzales AJ, Hook KE, Althaus IW, et al (2008). Antitumor activity and pharmacokinetic properties of PF-00299804, a second-generation irreversible pan-erbB receptor tyrosine kinase inhibitor. Mol Cancer Ther, 7, 1880-9.
  17. Gainor JF, Shaw AT (2013). Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist, 18, 865-75.
  18. Govindan R, Hammerman PS, Hayes DN, et al (2012). Comprehensive genomic characterization of squamous cell carcinoma of the lung. J Clin Oncol, 30,453s. abstr 7006.
  19. Griffith M, Griffith OL, Mwenifumbo J, et al (2010). Alternative expression analysis by RNA sequencing. Nat Methods, 7, 843-7.
  20. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D (2011). Global cancer statistics. CA Cancer J Clin, 61, 69-90.
  21. Jemal A, Siegel R, Xu J, Ward E (2010). Cancer statistics. CA Cancer J Clin, 60, 277-300.
  22. Jones S, Wang TL, Shih Ie M, et al (2010). Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science, 330, 228-31.
  23. Kratz JR, He J, Van Den Eeden SK, et al (2012). A practical molecular assay to predict survival in resected nonsquamous, non-small-cell lung cancer: development and international validation studies. Lancet, 379, 823-32.
  24. Kobayashi S, Boggon TJ, Dayaram T, et al (2005). EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med, 352, 786-92.
  25. Koivunen JP, Mermel C, Zejnullahu K, et al (2008). EML4-ALK fusion gene and efficacy of an ALK kinase inhibitor in lung cancer. Clin Cancer Res, 14, 4275-83.
  26. Kwak EL, Bang YJ, Camidge DR, et al (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med, 363, 1693-703.
  27. Keedy VL, Temin S, Somerfield MR, et al (2011). American society of clinical oncology provisional clinical opinion: epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol, 29, 2121-7.
  28. Keedy VL, Temin S, Somerfield MR, et al (2011). American society of clinical oncology provisional clinical opinion: Epidermal growth factor receptor (EGFR) mutation testing for patients with advanced non-small-cell lung cancer considering first-line EGFR tyrosine kinase inhibitor therapy. J Clin Oncol, 29, 2121-7.
  29. Kwak EL, Bang YJ, Camidge DR, et al (2010). Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med, 363, 1693-703.
  30. Ley TJ, Mardis ER, Ding L, et al (2008). DNA sequencing of a cytogenetically normal acute myeloid leukaemia genome. Nature, 456, 66-72.
  31. Lindeman NI, Cagle PT, Beasley MB, et al (2013). Molecular testing guideline for selection of lung cancer patients for EGFR and ALK tyrosine kinase inhibitors: guideline from the college of American pathologists, international association for the study of lung cancer, and association for molecular pathology. J Thorac Oncol, 8, 823-59.
  32. Lee W, Jiang Z, Liu J, et al (2010). The mutation spectrum revealed by paired genome sequences from a lung cancer patient. Nature, 465, 473-7.
  33. Ley TJ, Ding L, Walter MJ, et al (2010). DNMT3A mutations in acute myeloid leukemia. N Engl J Med, 363, 2424-33.
  34. Larsen JE, Minna JD (2011). Molecular biology of lung cancer: clinical implications. Clin Chest Med, 32, 703-40.
  35. Morozova O, Marra MA (2008). Applications of next-generation sequencing technologies in functional genomics. Genomics, 92, 255-64.
  36. Maher CA, Palanisamy N, Brenner JC, et al (2009). Chimeric transcript discovery by paired-end transcriptome sequencing. Proc Natl Acad Sci USA, 106, 12353-8.
  37. Meyerson M, Gabriel S, Getz G (2010). Advances in understanding cancer genomes through second-generation sequencing. Nat Rev Genet, 11, 685-96.
  38. Mardis ER, Ding L, Dooling DJ, et al (2009). Recurring mutations found by sequencing an acute myeloid leukemia genome. N Engl J Med, 361, 1058-66.
  39. Mok TS, Wu YL, Thongprasert S, et al (2009). Gefitinib or carboplatin-paclitaxel in pulmonary adenocarcinoma. N Engl J Med, 361, 947-57.
  40. Mitsudomi T, Morita S, Yatabe Y, et al (2010). Gefitinib versus cisplatin plus docetaxel in patients with non-small-cell lung cancer harbouring mutations of the epidermal growth factor receptor (WJTOG3405): An open label, randomised phase 3 trial. Lancet Oncol, 11, 121-8.
  41. Maemondo M, Inoue A, Kobayashi K, et al (2010). Gefitinib or chemotherapy for non-small-cell lung cancer with mutated EGFR. N Engl J Med, 362, 2380-8.
  42. Marsit CJ, Zheng S, Aldape K, et al (2005). PTEN expression in non-small cell lung cancer: evaluating its relation to tumor characteristics, allelic loss, and epigenetic alteration. Hum Pathol, 36, 768-76.
  43. National Comprehensive Cancer Network: Non-Small Cell Lung Cancer. Version 1.2015. NCCN clinical practice guidelines in oncology.
  44. Ozsolak F, Milos PM (2011). RNA sequencing: advances, challenges and opportunities. Nat Rev Genet, 12, 87-98.
  45. Paik PK, Hasanovic A, Wang L, et al (2012). Multiplex testing for driver mutations in squamous cell carcinomas of the lung. J Clin Oncol, 30, 481s. abstr 7505.
  46. Pleasance ED, Cheetham RK, Stephens PJ, et al (2010). A comprehensive catalogue of somatic mutations from a human cancer genome. Nature, 463, 191-6.
  47. Pao W, Miller VA, Politi KA, et al (2005). Acquired resistance of lung adenocarcinomas to gefitinib or erlotinib is associated with a second mutation in the EGFR kinase domain. PLoS Med, 2, 73.
  48. Pao W, Girard N (2011). New driver mutations in non-small-cell lung cancer. Lancet Oncol, 12, 175-80.
  49. Pfeifer M, Grau M, Lenze D, et al (2013). PTEN loss defines a PI3K/AKT pathway-dependent germinal center subtype of diffuse large B-cell lymphoma. Proc Natl Acad Sci USA, 110, 12420-5.
  50. Rosell R, Carcereny E, Gervais R, et al (2012). Erlotinib versus standard chemotherapy as first-line treatment for European patients with advanced EGFR mutation-positive non-smallcell lung cancer (EURTAC): a multicentre, open-label, randomised phase 3 trial. Lancet Oncol, 13, 239-46.
  51. Rodig SJ, Mino-Kenudson M, Dacic S, et al (2009). Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res, 15, 5216-23.
  52. Rimkunas VM, Crosby KE, Li D, et al (2012). Analysis of receptor tyrosine kinase ROS1-positive tumors in non-small cell lung cancer: identification of a FIG-ROS1 fusion. Clin Cancer Res, 18, 4449-57.
  53. Sun S, Schiller JH, Spinola M, et al (2007). New molecularly targeted therapies for lung cancer. J Clin Invest, 117, 2740-50.
  54. Soda M, Choi YL, Enomoto M, et al (2007). Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature, 448, 561-6.
  55. Shaw AT, Yeap BY, Mino-Kenudson M, et al (2009). Clinical features and outcome of patients with non-small-cell lung cancer who harborEML4-ALK. J Clin Oncol, 27, 4247-53.
  56. Shaw AT, Yeap BY, Solomon BJ, et al (2011). Effect of crizotinib on overall survival in patients with advanced non-smallcell lung cancer harbouring ALK gene rearrangement: a retrospective analysis. Lancet Oncol, 12, 1004-12.
  57. Stephens PJ, McBride DJ, Lin ML, et al (2009). Complex landscapes of somatic rearrangement in human breast cancer genomes. Nature, 462, 1005-10.
  58. Shah SP, Kobel M, Senz J, et al (2009). Mutation of FOXL2 in granulosa-cell tumors of the ovary. N Engl J Med, 360, 2719-29.
  59. Sos ML, Koker M, Weir BA, et al (2009). PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res, 69, 3256-61.
  60. Shaw AT, Camidge DR, Engelman JA (2012). Clinical activity of crizotinib in advanced non-small cell lung cancer (NSCLC) harboringROS1 gene rearrangement. J Clin Oncol, 30, 7508.
  61. Sasaki T, Rodig SJ, Chirieac LR, et al (2010). The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer, 46, 1773-80.
  62. Samuels Y, Wang Z, Bardelli A, et al (2004). High frequency of mutations of the PIK3CA gene in human cancers. Science, 304, 554.
  63. Trigka EA, Levidou G, Saetta AA, et al (2013). A detailed immunohistochemical analysis of the PI3K/AKT/mTOR pathway in lung cancer: correlation with PIK3CA, AKT1, K-RAS or PTEN mutational status and clinicopathological features. Oncol Rep, 30, 623-36.
  64. Thomas A, Rajan A, Lopez-Chavez A, et al (2013). From targets to targeted therapies and molecular profiling in non-small cell lung carcinoma. Ann Oncol, 24, 577-85.
  65. Tang H, Xiao G, Behrens C, et al (2013). A 12-gene set predicts survival benefits from adjuvant chemotherapy in non-small cell lung cancer patients. Clin Cancer Res, 19, 1577-86.
  66. Takeda H, Takigawa N, Ohashi K, et al (2013). Vandetanib is effective in EGFR-mutant lung cancer cells with PTEN deficiency. Exp Cell Res, 319, 417-23.
  67. US Food and Drug Administration: FDA approves Xalkori with companion diagnostic for a type of late-state lung cancer.
  68. Von Hoff DD, Stephenson JJ, Jr, Rosen P, et al (2010). Pilot study using molecular profiling of patients' tumors to find potential targets and select treatments for their refractory cancers. J Clin Oncol, 20, 4877-883.
  69. Voelkerding KV, Dames SA, Durtschi JD (2009). Nextgeneration sequencing: from basic research to diagnostics. Clin Chem, 55, 641-58.
  70. Wang Z, Gerstein M, Snyder M (2009). RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet, 10, 57-63.
  71. Wiegand KC, Shah SP, Al-Agha OM, et al (2010). ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med, 363, 1532-43.
  72. Zhou C, Wu YL, Chen G, et al (2011). Erlotinib versus chemotherapy as first-line treatment for patients with advanced EGFR mutation-positive non-small-cell lung cancer (OPTIMAL, CTONG-0802): A multicentre, openlabel, randomised, phase 3 study. Lancet Oncol, 12, 735-42.
  73. Zhao Q, Caballero OL, Levy S, et al (2009). Transcriptomeguided characterization of genomic rearrangements in a breast cancer cell line. Proc Natl Acad Sci USA, 106, 1886-91.
  74. Zhu CQ, Ding K, Strumpf D, et al (2010). Prognostic and predictive gene signature for adjuvant chemotherapy in resected non-small-cell lung cancer. J Clin Oncol, 28, 4417-24.
  75. Zhou YM, Liu J, Sun W (2014). MiR-130a overcomes gefitinib resistance by targeting met in non-small cell lung cancer cell lines. Asian Pac J Cancer Prev, 15, 1391-6.