DOI QR코드

DOI QR Code

Differentially Expressed Genes in Metastatic Advanced Egyptian Bladder Cancer

  • Zekri, Abdel-Rahman N (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Hassan, Zeinab Korany (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Bahnassy, Abeer A (Pathology Department, National Cancer Institute, Cairo University) ;
  • Khaled, Hussein M (Department of Medical Oncology, National Cancer Institute, Cairo University) ;
  • El-Rouby, Mahmoud N (Virology and Immunology Unit, Cancer Biology Department, National Cancer Institute, Cairo University) ;
  • Haggag, Rasha M (Department of Medical Oncology and Hematology, Faculty of Medicine, Zagazig University) ;
  • Abu-Taleb, Fouad M (Department of Medical Oncology and Hematology, Faculty of Medicine, Zagazig University)
  • Published : 2015.04.29

Abstract

Background: Bladder cancer is one of the most common cancers worldwide. Gene expression profiling using microarray technologies improves the understanding of cancer biology. The aim of this study was to determine the gene expression profile in Egyptian bladder cancer patients. Materials and Methods: Samples from 29 human bladder cancers and adjacent non-neoplastic tissues were analyzed by cDNA microarray, with hierarchical clustering and multidimensional analysis. Results: Five hundred and sixteen genes were differentially expressed of which SOS1, HDAC2, PLXNC1, GTSE1, ULK2, IRS2, ABCA12, TOP3A, HES1, and SRP68 genes were involved in 33 different pathways. The most frequently detected genes were: SOS1 in 20 different pathways; HDAC2 in 5 different pathways; IRS2 in 3 different pathways. There were 388 down-regulated genes. PLCB2 was involved in 11 different pathways, MDM2 in 9 pathways, FZD4 in 5 pathways, p15 and FGF12 in 4 pathways, POLE2 in 3 pathways, and MCM4 and POLR2E in 2 pathways. Thirty genes showed significant differences between transitional cell cancer (TCC) and squamous cell cancer (SCC) samples. Unsupervised cluster analysis of DNA microarray data revealed a clear distinction between low and high grade tumors. In addition 26 genes showed significant differences between low and high tumor stages, including fragile histidine triad, Ras and sialyltransferase 8 (alpha) and 16 showed significant differences between low and high tumor grades, like methionine adenosyl transferase II, beta. Conclusions: The present study identified some genes, that can be used as molecular biomarkers or target genes in Egyptian bladder cancer patients.

Keywords

Human bladder cancer;gene expression;cDNA microarray;Egypt

References

  1. Andrew AS, Nelson HH, Kelsey KT, et al (2006). Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility. Carcinogenesis, 27, 1030-7. https://doi.org/10.1093/carcin/bgi284
  2. Ashburner BP, Westerheide SD, Baldwin AS, Jr. (2001). The p65 (RelA) subunit of NF-kappaB interacts with the histone deacetylase (HDAC) corepressors HDAC1 and HDAC2 to negatively regulate gene expression. Mol Cell Biol, 21, 7065-77. https://doi.org/10.1128/MCB.21.20.7065-7077.2001
  3. Baffa R, Gomella LG, Vecchione A, et al (2000). Loss of FHIT expression in transitional cell carcinoma of the urinary bladder. Am J Pathol, 156, 419-24. https://doi.org/10.1016/S0002-9440(10)64745-1
  4. Bertagnolo V, Benedusi M, Brugnoli F, et al (2007). Phospholipase C-beta 2 promotes mitosis and migration of human breast cancer-derived cells. Carcinogenesis, 28, 1638-45. https://doi.org/10.1093/carcin/bgm078
  5. Bertagnolo V, Benedusi M, Querzoli P, et al (2006). PLC-beta2 is highly expressed in breast cancer and is associated with a poor outcome: a study on tissue microarrays. Int J Oncol, 28, 863-72.
  6. Bertagnolo V, Marchisio M, Pierpaoli S, et al (2002). Selective up-regulation of phospholipase C-beta2 during granulocytic differentiation of normal and leukemic hematopoietic progenitors. J Leukoc Biol, 71, 957-65.
  7. Blaveri E, Simko JP, Korkola JE, et al (2005). Bladder cancer outcome and subtype classification by gene expression. Clin Cancer Res, 11, 4044-55. https://doi.org/10.1158/1078-0432.CCR-04-2409
  8. Brugnoli F, Bovolenta M, Benedusi M, et al (2006). PLC-beta2 monitors the drug-induced release of differentiation blockade in tumoral myeloid precursors. J Cell Biochem, 98, 160-173. https://doi.org/10.1002/jcb.20749
  9. Bubendorf L (2001). High-throughput microarray technologies:from genomics to clinics. Eur Urol, 40, 231-8. https://doi.org/10.1159/000049777
  10. Cajulis RS, Haines GK, 3rd, Frias-Hidvegi D, et al (1995). Cytology, flow cytometry, image analysis, and interphase cytogenetics by fluorescence in situ hybridization in the diagnosis of transitional cell carcinoma in bladder washes: a comparative study. Diagn Cytopathol, 13, 214-23. https://doi.org/10.1002/dc.2840130307
  11. Cordon-Cardo C (1995). Mutations of cell cycle regulators. Biological and clinical implications for human neoplasia. Am J Pathol, 147, 545-60.
  12. Ding MX, Wang HF, Wang JS, et al (2012). ppGalNAc T1 as a potential novel marker for human bladder cancer. Asian Pac J Cancer Prev, 13, 5653-7. https://doi.org/10.7314/APJCP.2012.13.11.5653
  13. Dyrskjot L, Thykjaer T, Kruhoffer M, et al (2003). Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet, 33, 90-6.
  14. Dyrskjot L, Zieger K, Real FX, et al (2007). Gene expression signatures predict outcome in non-muscle-invasive bladder carcinoma: a multicenter validation study. Clin Cancer Res, 13, 3545-51. https://doi.org/10.1158/1078-0432.CCR-06-2940
  15. Eisen MB, Spellman PT, Brown PO, et al. (1998). Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA, 95, 14863-8. https://doi.org/10.1073/pnas.95.25.14863
  16. Figueroa JD, Malats N, Real FX, et al (2007a). Genetic variation in the base excision repair pathway and bladder cancer risk. Hum Genet, 121, 233-42. https://doi.org/10.1007/s00439-006-0294-y
  17. Figueroa JD, Malats N, Rothman N, et al (2007b). Evaluation of genetic variation in the double-strand break repair pathway and bladder cancer risk. Carcinogenesis, 28, 1788-93. https://doi.org/10.1093/carcin/bgm132
  18. Garcia-Closas M, Malats N, Real FX, et al (2006). Genetic variation in the nucleotide excision repair pathway and bladder cancer risk. Cancer Epidemiol Biomarkers Prev, 15, 536-42. https://doi.org/10.1158/1055-9965.EPI-05-0749
  19. Hansel DE, Nakayama M, Luo J, et al (2009). Shared TP53 gene mutation in morphologically and phenotypically distinct concurrent primary small cell neuroendocrine carcinoma and adenocarcinoma of the prostate. Prostate, 69, 603-9. https://doi.org/10.1002/pros.20910
  20. Haupt Y, Maya R, Kazaz A, et al. (1997). MDM2 promotes the rapid degradation of p53. Nature, 387, 296-9. https://doi.org/10.1038/387296a0
  21. Hennige AM, Burks DJ, Ozcan U, et al (2003). Upregulation of insulin receptor substrate-2 in pancreatic beta cells prevents diabetes. J Clin Invest, 112, 1521-32. https://doi.org/10.1172/JCI18581
  22. Huang BH, Laban M, Leung CH, et al (2005). Inhibition of histone deacetylase 2 increases apoptosis and p21Cip1/WAF1 expression, independent of histone deacetylase 1. Cell Death Differ, 12, 395-404. https://doi.org/10.1038/sj.cdd.4401567
  23. Huang YD, Shan W, Zeng L, et al (2013). Screening of differentially expressed genes related to bladder cancer and functional analysis with DNA microarray. Asian Pac J Cancer Prev, 14, 4553-7. https://doi.org/10.7314/APJCP.2013.14.8.4553
  24. Khanra K, Panda K, Mitra AK, et al (2012). Exon 8-9 mutations of DNA polymerase beta in ovarian carcinoma patients from Haldia, India. Asian Pac J Cancer Prev, 13, 4183-6. https://doi.org/10.7314/APJCP.2012.13.8.4183
  25. Kim WJ, Bae SC (2008). Molecular biomarkers in urothelial bladder cancer. Cancer Sci, 99, 646-52. https://doi.org/10.1111/j.1349-7006.2008.00735.x
  26. Kim WJ and Quan C (2005). Genetic and epigenetic aspects of bladder cancer. J Cell Biochem, 95, 24-33. https://doi.org/10.1002/jcb.20412
  27. Laishram RS, Kipgen P, Laishram S, et al (2012). Urothelial tumors of the urinary bladder in Manipur: a histopathological perspective. Asian Pac J Cancer Prev, 13, 2477-9. https://doi.org/10.7314/APJCP.2012.13.6.2477
  28. Lo Vasco VR, Calabrese G, Manzoli L, et al (2004). Inositidespecific phospholipase c beta1 gene deletion in the progression of myelodysplastic syndrome to acute myeloid leukemia. Leukemia, 18, 1122-6. https://doi.org/10.1038/sj.leu.2403368
  29. Lohrum MA, Ludwig RL, Kubbutat MH, et al (2003). Regulation of HDM2 activity by the ribosomal protein L11. Cancer Cell, 3, 577-587. https://doi.org/10.1016/S1535-6108(03)00134-X
  30. Matsumoto K, Ikeda M, Hirayama T, et al (2014). Clinical value of dividing false positive urine cytology findings into three categories: atypical, indeterminate, and suspicious of malignancy. Asian Pac J Cancer Prev, 15, 2251-5. https://doi.org/10.7314/APJCP.2014.15.5.2251
  31. Michiels S, Laplanche A, Boulet T, et al (2009). Genetic polymorphisms in 85 DNA repair genes and bladder cancer risk. Carcinogenesis, 30, 763-8. https://doi.org/10.1093/carcin/bgp046
  32. Mitra AP, Lin H, Datar RH, et al (2006). Molecular biology of bladder cancer: prognostic and clinical implications. Clin Genitourin Cancer, 5, 67-77. https://doi.org/10.3816/CGC.2006.n.020
  33. Momand J, Zambetti GP, Olson DC, et al. (1992). The mdm-2 oncogene product forms a complex with the p53 protein and inhibits p53-mediated transactivation. Cell, 69, 1237-45. https://doi.org/10.1016/0092-8674(92)90644-R
  34. Monte M, Benetti R, Collavin L, et al (2004). hGTSE-1 expression stimulates cytoplasmic localization of p53. J Biol Chem, 279, 11744-52. https://doi.org/10.1074/jbc.M311123200
  35. Monte M, Collavin L, Lazarevic D, et al (2000). Cloning, chromosome mapping and functional characterization of a human homologue of murine gtse-1 (B99) gene. Gene, 254, 229-36. https://doi.org/10.1016/S0378-1119(00)00260-2
  36. Oliner JD, Kinzler KW, Meltzer PS, et al. (1992). Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 358, 80-3. https://doi.org/10.1038/358080a0
  37. Orsulic S and Peifer M (1996). Cell-cell signalling: Wingless lands at last. Curr Biol, 6, 1363-7. https://doi.org/10.1016/S0960-9822(96)00731-2
  38. Quackenbush J (2006). Microarray analysis and tumor classification. N Engl J Med, 354, 2463-72. https://doi.org/10.1056/NEJMra042342
  39. Ramshankar V, Krishnamurthy A (2013). Lung cancer detection by screening - presenting circulating miRNAs as a promising next generation biomarker breakthrough. Asian Pac J Cancer Prev, 14, 2167-72. https://doi.org/10.7314/APJCP.2013.14.4.2167
  40. Rhee SG (2001). Regulation of phosphoinositide-specific phospholipase C. Annu Rev Biochem, 70, 281-312. https://doi.org/10.1146/annurev.biochem.70.1.281
  41. Rojas FA, Hirata AE and Saad MJ (2003). Regulation of insulin receptor substrate-2 tyrosine phosphorylation in animal models of insulin resistance. Endocrine, 21, 115-22. https://doi.org/10.1385/ENDO:21:2:115
  42. Sanchez-Carbayo M, Socci ND, Lozano J, et al (2006). Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol, 24, 778-89. https://doi.org/10.1200/JCO.2005.03.2375
  43. Sanchez-Carbayo M, Socci ND, Lozano JJ, et al (2003). Gene discovery in bladder cancer progression using cDNA microarrays. Am J Pathol, 163, 505-16. https://doi.org/10.1016/S0002-9440(10)63679-6
  44. Shi QQ, Zuo GW, Feng ZQ, et al (2014). 'Effect of trichostatin A on anti HepG2 liver carcinoma cells: inhibition of HDAC activity and activation of Wnt/beta-Catenin signaling. Asian Pac J Cancer Prev, 15, 7849-55. https://doi.org/10.7314/APJCP.2014.15.18.7849
  45. Soloway MS, Sofer M and Vaidya A (2002). Contemporary management of stage T1 transitional cell carcinoma of the bladder'. J Urol, 167, 1573-83. https://doi.org/10.1016/S0022-5347(05)65157-9
  46. Stalberg P, Granberg D, Carling T, et al (2003). In situ RNARNA hybridisation of phospholipase C beta 3 shows lack of expression in neuroendocrine tumours'. Anticancer Res, 23, 2227-32.
  47. Timofeeva OA, Zhang X, Ressom HW, et al (2009). Enhanced expression of SOS1 is detected in prostate cancer epithelial cells from African-American men. Int J Oncol, 35, 751-760.
  48. Tomoda T, Bhatt RS, Kuroyanagi H, et al (1999). A mouse serine/threonine kinase homologous to C. elegans UNC51 functions in parallel fiber formation of cerebellar granule neurons. Neuron, 24, 833-46. https://doi.org/10.1016/S0896-6273(00)81031-4
  49. van Rhijn BW, Montironi R, Zwarthoff EC, et al (2002). Frequent FGFR3 mutations in urothelial papilloma. J Pathol, 198, 245-51. https://doi.org/10.1002/path.1202
  50. Walton TJ, Sherwood BT, Parkinson RJ, et al (2009). Comparative outcomes following endoscopic ureteral detachment and formal bladder cuff excision in open nephroureterectomy for upper urinary tract transitional cell carcinoma. J Urol, 181, 532-9.
  51. Withers DJ (2001). Insulin receptor substrate proteins and neuroendocrine function. Biochem Soc Trans, 29, 525-9. https://doi.org/10.1042/bst0290525
  52. Withers DJ, Burks DJ, Towery HH, et al. (1999). Irs-2 coordinates Igf-1 receptor-mediated beta-cell development and peripheral insulin signalling. Nat Genet, 23, 32-40.
  53. Wodarz A, Nusse R (1998). Mechanisms of Wnt signaling in development. Annu Rev Cell Dev Biol, 14, 59-88. https://doi.org/10.1146/annurev.cellbio.14.1.59
  54. Yan J, Kuroyanagi H, Tomemori T, et al. (1999). 'Mouse ULK2, a novel member of the UNC-51-like protein kinases: unique features of functional domains'. Oncogene, 18, 5850-9. https://doi.org/10.1038/sj.onc.1202988
  55. Yang MH, Yoo KH, Yook YJ, et al (2007). The gene expression profiling in murine cortical cells undergoing programmed cell death (PCD) induced by serum deprivation. J Biochem Mol Biol, 40, 277-85. https://doi.org/10.5483/BMBRep.2007.40.2.277
  56. Yang YH, Dudoit S, Luu P, et al (2002). Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res, 30, 15. https://doi.org/10.1093/nar/30.4.e15
  57. Zaravinos A, Lambrou GI, Volanis D, et al (2011). Spotlight on differentially expressed genes in urinary bladder cancer. PLoS One, 6, 18255. https://doi.org/10.1371/journal.pone.0018255
  58. Zekri AR, Hassan ZK, Bahnassy AA, et al (2012). Molecular prognostic profile of Egyptian HCC cases infected with hepatitis C virus. Asian Pac J Cancer Prev, 13, 5433-8. https://doi.org/10.7314/APJCP.2012.13.11.5433
  59. Zhang H, Wang H (2000). MDM2 oncogene as a novel target for human cancer therapy. Curr Pharm Des, 6, 393-416. https://doi.org/10.2174/1381612003400911

Cited by

  1. GTSE1 regulates spindle microtubule dynamics to control Aurora B kinase and Kif4A chromokinesin on chromosome arms vol.216, pp.10, 2017, https://doi.org/10.1083/jcb.201610012
  2. Ectopic Otoconin 90 expression in triple negative breast cancer cell lines is associated with metastasis functions vol.14, pp.2, 2019, https://doi.org/10.1371/journal.pone.0211737