DOI QR코드

DOI QR Code

Storm Sudden Commencements Without Interplanetary Shocks

  • Park, Wooyeon ;
  • Lee, Jeongwoo ;
  • Yi, Yu ;
  • Ssessanga, Nicholas ;
  • Oh, Suyeon
  • Received : 2015.05.27
  • Accepted : 2015.08.05
  • Published : 2015.09.15

Abstract

Storm sudden commencements (SSCs) occur due to a rapid compression of the Earth's magnetic field. This is generally believed to be caused by interplanetary (IP) shocks, but with exceptions. In this paper we explore possible causes of SSCs other than IP shocks through a statistical study of geomagnetic storms using SYM-H data provided by the World Data Center for Geomagnetism - Kyoto and by applying a superposed epoch analysis to simultaneous solar wind parameters obtained with the Advanced Composition Explorer (ACE) satellite. We select a total of 274 geomagnetic storms with minimum SYM-H of less than -30nT during 1998-2008 and regard them as SSCs if SYM-H increases by more than 10 nT over 10 minutes. Under this criterion, we found 103 geomagnetic storms with both SSC and IP shocks and 28 storms with SSC not associated with IP shocks. Storms in the former group share the property that the strength of the interplanetary magnetic field (IMF), proton density and proton velocity increase together with SYM-H, implying the action of IP shocks. During the storms in the latter group, only the proton density rises with SYM-H. We find that the density increase is associated with either high speed streams (HSSs) or interplanetary coronal mass ejections (ICMEs), and suggest that HSSs and ICMEs may be alternative contributors to SSCs.

Keywords

geomagnetic storm;storm sudden commencement;SYM-H;interplanetary shock;high speed stream

References

  1. Burlaga LF, Ogilvie KW, Causes of sudden commencements and sudden impulses, J. Geophys. Res. 74, 2815-2825 (1969). http://dx.doi.org/10.1029/JA074i011p02815 https://doi.org/10.1029/JA074i011p02815
  2. Chao JK, Lepping RP, A correlative study of SSC's, interplanetary shocks, and solar activity, J. Geophys. Res. 79, 1799-1807 (1974). http://dx.doi.org/10.1029/JA079i013p01799 https://doi.org/10.1029/JA079i013p01799
  3. Iyemori T, Storm-time magnetospheric currents inferred from mid-latitude geomagnetic field variations, J. Geomagn. Geoelectr. 42, 1249-1265 (1990). http://dx.doi.org/10.5636/jgg.42.1249 https://doi.org/10.5636/jgg.42.1249
  4. Jian LK, Russell CT, Luhmann JG, Comparing solar minimum 23/24 with historical solar wind records at 1 AU, Sol. Phys. 274, 321-344 (2011). http://dx.doi.org/ 10.1007/s11207-011-9737-2 https://doi.org/10.1007/s11207-011-9737-2
  5. Kim JH, Chang HY, Statistical Properties of Geomagnetic Activity Indices and Solar Wind Parameters, J. Astron. Space Sci. 31, 149-157 (2014a). http://dx.doi.org/10.5140/JASS.2014.31.2.149 https://doi.org/10.5140/JASS.2014.31.2.149
  6. Kim JH, Chang HY, Spectral Analysis of Geomagnetic Activity Indices and Solar Wind Parameters, J. Astron. Space Sci. 31, 159-167 (2014b). http://dx.doi.org/10.5140/JASS.2014.31.2.159 https://doi.org/10.5140/JASS.2014.31.2.159
  7. Kim KH, Moon YJ, Cho KS, Prediction of the 1-AU arrival times of CME-associated interplanetary shocks: Evaluation of an empirical interplanetary shock propagation model, J. Geophys. Res. 112, A05104 (2007). http://dx.doi.org/10.1029/2006JA011904 https://doi.org/10.1029/2006JA011904
  8. O'Brien TP, McPherron RL, Sornette D, Reeves GD, Friedel R, et al., Which magnetic storms produce relativistic electrons at geosynchronous orbit?, J. Geophys. Res. 106, 15533-15544 (2001). http://dx.doi.org/10.1029/2001JA000052 https://doi.org/10.1029/2001JA000052
  9. Oh S, Dependence of Quite Time Geomagnetic Activity Seasonal Variation on the Solar Polar Magnetic Polarity, J. Astron. Space Sci. 30, 43-48 (2013). http://dx.doi.org/10.5140/JASS.2013.30.1.043 https://doi.org/10.5140/JASS.2013.30.1.043
  10. Oh S, Kim B, Variation of Solar, Interplanetary and Geomagnetic Parameters during Solar Cycles 21-24, J. Astron. Space Sci. 30, 101-106 (2013). http://dx.doi.org/10.5140/JASS.2013.30.2.101 https://doi.org/10.5140/JASS.2013.30.2.101
  11. Oh SY, Yi Y, Kim YH, Solar cycle variation of the interplanetary forward shock drivers observed at 1AU, Sol. Phys. 245, 391-410 (2007). http://dx.doi.org/10.1007/s11207-007-9042-2 https://doi.org/10.1007/s11207-007-9042-2
  12. Russell CT, Ginskey M, Petrinec S, Le G, The effect of solar wind dynamic pressure changes on low and mid-latitude magnetic records, Geophys. Res. Lett. 19, 1227-1230 (1992). http://dx.doi.org/10.1029/92GL01161 https://doi.org/10.1029/92GL01161
  13. Russell CT, Ginskey M, Angelopoulos V, Effect of sudden impulses on currents in the auroral ionosphere under northward interplanetary magnetic field conditions: A case study, J. Geophys. Res. 99, 17617-17622 (1994). http://dx.doi.org/10.1029/94JA01232 https://doi.org/10.1029/94JA01232
  14. Smith EJ, Slavin JA, Zwickl RD, Bame SJ, Shocks and storm sudden commencements, in Solar Wind Magnetosphere Coupling, eds. Kamide Y, Slavin JA (Terra Scientific, Tokyo, 1986), 345-365.
  15. Sugiura M, Wilson CR, Oscillation of the geomagnetic field lines and associated magnetic perturbations at conjugate points, J. Geophys. Res. 69, 1211-1216 (1964). http://dx.doi.org/10.1029/JZ069i007p01211 https://doi.org/10.1029/JZ069i007p01211
  16. Takeuchi T, Russell CT, Araki T, Effect of the orientation of interplanetary shock on the geomagnetic sudden commencement, J. Geophys. Res. 107, 1423 (2002). http://dx.doi.org/10.1029/2002JA009597 https://doi.org/10.1029/2002JA009597
  17. Tsurutani BT, Gonzalez WD, Gonzalez ALC, Tang F, Arballo JK, et al., Interplanetary origin of geomagnetic activity in the declining phase of the solar cycle, J. Geophys. Res. 100, 21717-21734 (1995). http://dx.doi.org/10.1029/95JA01476 https://doi.org/10.1029/95JA01476
  18. Wang C, Li CX, Huang ZH, Richardson JD, The effect of interplanetary shock strengths and orientations on storm sudden commencement rise times, Geophys. Res. Lett. 33, L14104 (2006). http://dx.doi.org/10.1029/2006GL025966 https://doi.org/10.1029/2006GL025966
  19. Wang C, Li H, Richardson JD, Kan JR, Interplanetary shock characteristics and associated geosynchronous magnetic field variations estimated from sudden impulses observed on the ground, J. Geophys. Res. 115, A09215 (2010). http://dx.doi.org/10.1029/2006GL025966 https://doi.org/10.1029/2006GL025966
  20. Wanliss JA, Showalter KM, High-resolution global storm index: Dst versus SYM-H, J. Geophys. Res. 111, A02202 (2006). http://dx.doi.org/10.1029/2005JA011034 https://doi.org/10.1029/2005JA011034
  21. Wilken B, Goertz CK, Baker DN, Higbie PR, Fritz TA, The SSC on July 29, 1977 and its propagation within the magnetosphere, J. Geophys. Res. 87, 5901-5910 (1982). http://dx.doi.org/10.1029/JA087iA08p05901 https://doi.org/10.1029/JA087iA08p05901

Cited by

  1. Installation of Induced Current Measurement Systems in Substations and Analysis of GIC Data during Geomagnetic Storms vol.32, pp.4, 2015, https://doi.org/10.5140/JASS.2015.32.4.427
  2. Geoeffective Properties of Solar Transients and Stream Interaction Regions 2017, https://doi.org/10.1007/s11214-017-0411-3

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)