Optical Properties Control by Surface Treatment on Display Cover Glass

디스플레이 커버 글라스의 표면 처리에 의한 광학요소 제어

  • Kim, Sung Soo (Department of Energy & Environmental Engineering, Shinhan University) ;
  • Hwang, Jai Suk (Department of Energy & Environmental Engineering, Shinhan University) ;
  • Jeon, Bup Ju (Department of Energy & Environmental Engineering, Shinhan University)
  • 김성수 (신한대학교 에너지환경공학과) ;
  • 황재석 (신한대학교 에너지환경공학과) ;
  • 전법주 (신한대학교 에너지환경공학과)
  • Received : 2015.07.09
  • Accepted : 2015.08.04
  • Published : 2015.09.01


To provide the clear images from the direct light on electrical board and display devices, anti glare treatment of display cover glass is needed. In this study, the effects of surface treatment temperature, concentration, and etching solution coating thickness of the gel phase on optical elements control such as gloss, haze of reflected light and transmittance, were investigated. Cover glasses were treated at different coating thickness and additive concentration. The optical properties were examined using spectrophotometer, gloss and haze meter. The surface morphology and roughness were measured by the optical microscope and Ra measuring instrument. The etching rate and surface morphologies were dramatically affected by the concentration of acid additive in the viscous gel because of re-crystallization of components in the etching solution, hydrogel formation and coagulant after coating on glass substrate. In our experimental range, cover glass which is surface-treated with various optical properties as well as the morphology uniformity was obtained; in particular, optical properties could be controlled by etching solution coating thickness of the gel phase and the concentration of additive. The gloss was depended on the surface roughness and it showed the linear relationship between optical transmittance and haze of reflected light, respectively.


Supported by : 중소기업청


  1. K. Nakata, M. Sakai, T. Ochiai, T. Murakami, K. Takagi, and A. Fujishima, Langmuir, 27, 3275 (2011). [DOI:]
  2. H. R. Lee, D. J. Kim, and K. H. Lee, Surf. Coat. Technol., 142, 468 (2001). [DOI:]
  3. B. G. Kum, Y. C. Park, Y. J. Chang, J. Y. Jeon, and H. M. Jang, Thin Solid Films, 519, 3778 (2011). [DOI:]
  4. N. Yamaguchi, K. Tadanaga, A. Matsuda, T. Minami, and M. T atsumisago, Surf. Coat. Technol., 201, 3653 (2006). [DOI:]
  5. D. S. Hecht, D. Thomas, L. Hu, C. Ladous, T. Lam, Y. B. Park, G. Irvin, and P. Drzaic, J. Soc. Information Display, 17, 941(2009). [DOI:]
  6. J. Moghal, J. Kobler, J. Sauer, J. Best, M. Gardener, A. R. Watt, and G. Wakefield, ACS Appl. Mater. Interfaces, 4, 854 (2012). [DOI:]
  7. X. T. Zhang, O. Sato, M. Taguchi, Y. Einaga, T. Murakami, and A. Fujishima, Chem. Mater., 17, 696 (2005). [DOI:]
  8. D. Y. Lee, M. F. Rubner, and R. E. Cohen, Nano Lett., 6, 2305 (2006). [DOI:]
  9. J. Choder, R. H. Pote, P. F. Becker, and R. J. Gewalt, Anti-glare Screen with Electromagnetic Interference Rejection, US Patent 4,246,613 (1981).
  10. G. Wu, J. Wang, J. Shen, T. Yang, Q. Zhang, B. Zhou, Z. Deng, F. Bin, D. Zhou, and F. Zhang, J. Non-Crystalline Solids, 275, 169 (2000). [DOI:]
  11. T. Morimoto, Y. Sanada, and H. Tomonaga, Thin Solid Films, 392, 214 (2001). [DOI:]
  12. C. Goebbert, H. Bisht, N. Al-Dahoudi, R. Nonninger, M. A. Aegerter, and H.Schmidt, J. Sol-Gel Sci. Technol., 19, 201 (2000). [DOI:]
  13. B. T. Liu, Y. T. Teng, R. H. Lee, W. C. Liaw, and C. H. Hsieh, Colloids and Surfaces A, 389, 138 (2011). [DOI:]
  14. B. Louis, N. Krins, M. Faustini, and D. Grosso, J. Phys. Chem. C, 115, 3115 (2011). [DOI:]
  15. Y. H. Kim, Preparation of Mobile Anti-Glare Glass, (Ministry of Education, Science and Technology, 2012) p. 10.
  16. R. Y. Tsai, Appl. Phys. Lett., 65, 37 (1994). [DOI:]
  17. P. R. Nemeth, T. J. Barnidge, S. S. Dudley, and G. N. Prior, Rigid Antiglare Low Reflection Glass for Touch Screen Application", US Patent 7889284 B1 (2011).