DOI QR코드

DOI QR Code

Enhancement of Bt-Plus Toxicity by Unidentified Biological Response Modifiers Derived from the Bacterial Culture Broth of Xenornabdus nematiphila

Xenorhabuds nematophila 세균 배양액 유래 미확인 생리활성 물질의 비티플러스 살충력 상승효과

  • Park, Youngjin (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Minwoo (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Kunwoo (Department of Bioresource Sciences, Andong National University) ;
  • Kim, Yonggyun (Department of Bioresource Sciences, Andong National University)
  • 박영진 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김민우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김건우 (안동대학교 자연과학대학 생명자원과학과) ;
  • 김용균 (안동대학교 자연과학대학 생명자원과학과)
  • Received : 2014.12.26
  • Accepted : 2015.04.05
  • Published : 2015.06.01

Abstract

'Bt-Plus' has been developed by mixing spores of Bacillus thuringiensis (Bt) and culture broth of Xenorhabdus nematophila (Xn). Despite its high toxicity, it has some imitation to broaden its efficacy against diverse insect pest spectrum. This study focuses on enhancement of Bt-Plus toxicity against semi-susceptible insect, Spodoptera exitgua, by addition of Xn metabolites. Two main Xn metabolites, oxindole (OI) and benzylideneacetone (BZA), are known to enhance the Bt insecticidal activities. The addition of OI or BZA significantly increased Bt-Plus pathogenicity. However, when the freeze-dried Xn culture broth was added to Bt-Plus, much less amount was enough to enhance the toxicity compared to the amount of OI or BZA. An HPLC analysis indicated that there were more than 12 unidentifed bacterial metabolites in Xn culture broth. These suggest that there are potent biological response modifiers in Xn metabolites other than OI and BZA.

Acknowledgement

Supported by : 한국연구재단

References

  1. Akhurst, R.J., 1980. Morphological and functional dimorphism in Xenorhabdus spp., bacteria symbiotically associated with the insect pathogenic nematodes Neoaplectana and Heterorhabditis. J. Gen. Microbiol. 121, 303-309.
  2. Bravo, A., Gomez, I., Conde, J., Munoz-Garay, C., Sanchez, .J, Miranda, R., Zhang, M., Gill, S.S., Soberon, M., 2004. Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab poreforming toxin to amino peptidase N receptor leading to insertion into membrane micro-domain. Biochim. Biophys. Acta. 1667: 38-46. https://doi.org/10.1016/j.bbamem.2004.08.013
  3. Bravo, A., Likitvivatanavong, S., Gill, S.S., Soberon, M., 2011. Bacillus thuringiensis: A story of a successful bioinsecticide. Insect Biochem. Mol. Biol. 41, 423-431. https://doi.org/10.1016/j.ibmb.2011.02.006
  4. Broderick, N.A., Raffa, K.F., Handelsman, J., 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proc. Natl. Acad. Sci. USA 103, 15196-15199. https://doi.org/10.1073/pnas.0604865103
  5. Crickmore, N., Baum, J., Bravo, A., Lereclus, D., Narva, K., Sampson, K., Schnepf, E., Sun, M., Zeigler, D.R., 2014. Bacillus thuringiensis toxin nomenclature. http://www.btnomenclature.info.
  6. Eom, S., Park, Y., Kim, H., Kim, Y., 2014. Development of a High Efficient "Dual Bt-Plus" Insecticide Using a Primary Form of an Entomopathogenic Bacterium, Xenorhabdus nematophila. J. Microbiol. Biotechnol. 24, 507-521. https://doi.org/10.4014/jmb.1310.10116
  7. Gill, S.S., Cowles, E.A., Pietrantonio, P.V., 1992. The mode of action of Bacillus thuringiensis endotoxin. Annu. Rev. Entomol. 37, 615-636. https://doi.org/10.1146/annurev.en.37.010192.003151
  8. Goh, H.G., Lee, S.G., Lee, B.P., Choi, K.M., Kim, J.H., 1990. Simple mass-rearing of beet armyworm, Spodoptera exigua (Hubner) (Lepidoptera: Noctuidae), on an artificial diet. Korean J. Appl. Entomol. 29, 180-183.
  9. Herbert, E.E., Goodrich-Blair, H., 2007. Friend and foe: the two face of Xenorhabdus nematophila. Nat. Rev. Microbial. 5, 634-636. https://doi.org/10.1038/nrmicro1706
  10. Hua, G., Park, Y., Adang, M.J, 2014. Cadherin AdCad1 in Alphitobius diaperinus larvae is a receptor of Cry3Bb toxin from Bacillus thuringiensis. Insect Biochem. Mol. Biol. 45, 11-17. https://doi.org/10.1016/j.ibmb.2013.10.007
  11. Hwang, J., Park, Y., Lee, D., Kim, Y., 2013. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways bt blocked eicosanoid biosynthesis. Arch. Insect Biochem. Physiol. 83, 151-169. https://doi.org/10.1002/arch.21103
  12. Jung, C., Kim, Y., 2006. Potentiating effect of Bacillus thuringiensis ssp. kurstaki on pathogenicity of entomopathogenic bacterium Xenorhabdus nematophila K1 against diamondback moth, Plutella xylostella. J. Econ. Entomol. 100, 246-250.
  13. Kaya, H.K., Gaugler, R., 1993. Entomopathogenic nematodes. Annu. Rev. Entomol. 38, 181-206. https://doi.org/10.1146/annurev.en.38.010193.001145
  14. Kim, Y., Ji, D., Cho, S., Park, Y., 2005. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression. J. Invertebr. Pathol. 89, 258-264. https://doi.org/10.1016/j.jip.2005.05.001
  15. Park, Y., Kim, Y., 2000. Eicosanoids rescue Spodoptera exigua infected with Xenorhabdus nematophila, the symbiotic bacteria to the entomopathogenic nematode Steinernema carpocapsae. J. Insect Physiol. 46, 1469-1476. https://doi.org/10.1016/S0022-1910(00)00071-8
  16. Park, Y., Kim, Y., 2003. Xenorhabdus nematophila inhibits p-bromophenacyl bromide (BPB)-sensitive PLA2 of Spodoptera exigua. Arch. Insect Biochem. Physiol. 54, 134-142. https://doi.org/10.1002/arch.10108
  17. Park, Y., Kim, Y., 2013. RNA interference of cadherin gene expression in Spodoptera exigua reveals its significance as a specific Bt target J. Invertebr. Pathol. 114, 285-291. https://doi.org/10.1016/j.jip.2013.09.006
  18. Park, Y., Gonzalez-Martinez, R.M., Navarro-Cerrillo, G., Chakroun, M., Kim, Y., Ziarsolo, P, Blanca, J., Canizares, J., Ferre, J., Herrero, S., 2014. ABCC transporters mediate insect resistance to multiple Bt toxins revealed by bulk segregant analysis. BMC Biol. 12, 46. https://doi.org/10.1186/1741-7007-12-46
  19. Pigott, C.R., Ellar, D.J., 2007. Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiol. Mol. Biol. Rev. 71, 255-281. https://doi.org/10.1128/MMBR.00034-06
  20. SAS Institute, Inc., 1989. SAS/STAT User's Guide, release 6.03 Ed. SAS Institute, Cary, NC.
  21. Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., Zeigler, D.R., Dean, D.H., 1998. Bacillus thuringiensis and its pesticidal crystal proteins. J. Micribiol. Mol. Biol. Rev. 62, 775-806.
  22. Seo, S., Kim, Y., 2010. Study on development of novel biopesticides using entomopathogenic bacterial culture broth of Xenorhabdus and Photorhabdus. Korean J. Appl. Entomol. 49, 241-249. https://doi.org/10.5656/KSAE.2010.49.3.241
  23. Seo, S., Lee, S., Hong, Y., Kim, Y., 2012. Phospholipase $A_2$ inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata. Appl. Environ. Microbiol. 78, 3816-3823. https://doi.org/10.1128/AEM.00301-12
  24. Shrestha, S., Kim, Y., 2009. Biochemical characteristics of immune-associated phospholipase A(2) and its inhibition by an entomopathogenic bacterium, Xenorhabdus nematophila. J. Microbiol. 47, 774-782. https://doi.org/10.1007/s12275-009-0145-3
  25. Shrestha, S., Hong, Y., Kim, Y., 2010. Two chemical derivatives of bacterial metabolites suppress cellular immune responses and enhance pathogenicity of Bacillus thuringiensis against the diamondback moth, Plutella xylostella. J. Asia Pac. Entomol. 13, 55-60. https://doi.org/10.1016/j.aspen.2009.11.005
  26. Stanley, D., 2006. Prostaglandins and other eicosanoids in insects: biological significance. Annu. Rev. Entomol. 51, 25-44. https://doi.org/10.1146/annurev.ento.51.110104.151021
  27. Stanley, D., Kim, Y., 2011. Prostaglandins and their receptors in insect biology. Front. Entocrinol. 2:105. doi:10.3389/fendo.2011.00105. https://doi.org/10.3389/fendo.2011.00105
  28. Tabashnik, B.E., Finson, N., Groeters, F.R., Moar, W.J., Johnson, M.W., Luo, K., Adang, M.J., 1994. Reversal of resistance to Bacillus thuringiensis in Plutella xylostella. Proc. Natl. Acad. Sci. USA 91, 4120-4124. https://doi.org/10.1073/pnas.91.10.4120
  29. Tabashnik, B.E., Liu, Y.B., Malvar, T., Heckel, D.G., Masson, L., Ballester, V., Granero, F., Mensua, J.L., Ferre, J., 1997. Global variation in the genetic and biochemical basis of diamondback moth resistance to Bacillus thuringiensis. Proc. Natl. Acad. Sci. USA 94, 12780-12785. https://doi.org/10.1073/pnas.94.24.12780
  30. Zhang, X., Candas, M., Griko, N.B., Rose-Young, L., Bulla, L.A. Jr., 2005. Cytotoxicity of Bacillus thuringiensis Cry1Ab toxin depends on specific binding of the toxin to the cadherin receptor BT-R1 expressed in insect cells. Cell Death Differ. 12, 1407-1416. https://doi.org/10.1038/sj.cdd.4401675